删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

小麦籽粒钙元素含量的研究进展

本站小编 Free考研考试/2021-12-26

刘玉秀,1, 黄淑华2, 王景琳1, 张正茂,1,*1西北农林科技大学农学院, 陕西杨凌 712100
2西北农林科技大学园艺学院, 陕西杨凌 712100

Research advance on calcium content in wheat grains

LIU Yu-Xiu,1, HUANG Shu-Hua2, WANG Jing-Lin1, ZHANG Zheng-Mao,1,*1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
2College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China

通讯作者: * 张正茂, E-mail: zhzhm@nwsuaf.edu.cn

收稿日期:2020-06-2接受日期:2020-09-25网络出版日期:2020-09-29
基金资助:国家重点研发计划项目.2016YFD0102004
陕西省自然科学基础研究计划一般项目(青年).2019JQ-542


Received:2020-06-2Accepted:2020-09-25Online:2020-09-29
Fund supported: National Key Research and Development Program of China.2016YFD0102004
Natural Science Basic Research Plan in Shaanxi Province of China.2019JQ-542

作者简介 About authors
E-mail: yxliu@nwsuaf.edu.cn






摘要
提高矿物质营养元素含量正在成为世界主要粮食作物的重要研究方向和育种目标。钙元素是人体必需的矿物质元素, 在人类骨骼形成和新陈代谢中发挥着重要作用。全球约35亿人缺钙, 缺钙已成为影响人类健康的国际性重大问题。主食是一种最优安全的矿物质元素补充途径。小麦是我国乃至全世界主要粮食作物, 是全球35%~40%人口主要的食物来源, 是摄入钙的主要来源, 是矿物质元素生物强化的重要作物。通过遗传改良方法提高小麦籽粒钙元素含量被认为是解决缺钙最经济、有效、可持续的措施, 目前已引起了国内外****的高度关注。本文综述了近年来小麦籽粒钙元素含量的研究进展, 主要包括籽粒钙含量的遗传差异、影响因素以及与相关性状关系、调控机理。此外, 我们还提出了将来进行钙营养强化小麦研究的方向, 此研究内容为加快通过主粮实现有效补钙、倡导健康营养的膳食模式、满足由“量”的需求向“质”的需求转变的粮食安全、改善国民健康状况以及减少因缺钙造成的经济损失提供了解决方案。
关键词: 小麦;籽粒钙含量;钙营养强化

Abstract
Increasing the mineral content is becoming the important research direction and major target for crops breeding in the world. Calcium is an essential mineral element for human health and plays a pivotal role in skeletogenesis and metabolism. It is estimated that about 3.5 billion people was suffered from calcium deficiencies. Calcium deficiency has become a major international problem harming human health. The staple food is an optimal and safe way to mineral supplement. Wheat, one of the main food crops in China and even in the world, is the main source of food for 35%-40% of global population, a main source for human’s calcium intake as well as an important crop of mineral element biofortification. Improving the calcium content in wheat grains through genetic improvement is considered to be the most economical, effective and sustainable measure to solve the calcium deficiency, which has aroused great concern from international scholars. This paper summarized the recent advances in the study of calcium content in wheat grains, mainly including the genetic variation, affecting factors, the relationship with related traits and regulation mechanism of calcium content in grain. Furthermore, we also put forward the direction of future research on calcium-fortified wheat, which provides solutions for accelerating the effective calcium supplementation through staple food, promoting the healthy and nutritious dietary pattern, ensuring the food security to meet the transition from “quantitative” to “qualitative” demands, improving people’s health, and reducing economic losses caused by calcium deficiency.
Keywords:wheat;calcium content in grain;calcium fortification


PDF (418KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
刘玉秀, 黄淑华, 王景琳, 张正茂. 小麦籽粒钙元素含量的研究进展[J]. 作物学报, 2021, 47(2): 187-196. doi:10.3724/SP.J.1006.2021.01045
LIU Yu-Xiu, HUANG Shu-Hua, WANG Jing-Lin, ZHANG Zheng-Mao. Research advance on calcium content in wheat grains[J]. Acta Agronomica Sinica, 2021, 47(2): 187-196. doi:10.3724/SP.J.1006.2021.01045


钙是人体生命活动所必需的矿物质元素。钙不仅是骨骼和牙齿重要组成部分, 而且在人体中参与骨骼肌和心肌的收缩、神经反应、免疫吞噬等重要的生理功能[1]。全球约35亿人缺钙, 其中90%缺钙人群在非洲和亚洲, 缺钙已成为影响人类健康的世界性重大问题[2,3]。2012年我国居民人均钙摄入量为366.1 mg d-1, 不到中国营养学会推荐钙摄入量的一半, 且低于2002年388.8 mg [4]。缺钙可引起骨质疏松症、骨关节病、小儿佝偻病等疾病[1,5], 其中仅缺钙引起的骨质疏松性骨折, 美国和我国每年需花费上百亿的医疗费用[6]。另外, 饮食中低钙摄入量与肾结石和结肠癌的风险增加有关[7]

人类借助富含钙的食物、保健品或药品等进行补钙, 但依然存在投资大、覆盖面小和费用高等缺陷, 不能根治钙营养不良的问题。主食是一种最优安全的矿物质元素补充途径。在食品加工过程中添加营养强化剂, 提高食品中钙含量, 如钙强化豆浆、钙强化橙汁和富钙饼干[1,8] , 但提高了生产成本且覆盖面不广。生物强化是一种基于农业的改善人体营养的工具 。生物强化是通过遗传改良方法提高小麦籽粒的钙等矿物质元素含量, 是在小麦生长过程中自然而然的增加, 且不影响作物的农艺性状和口感特性[9,10,11]。粮食作物的生物强化是一种低成本、可持续和有效解决钙缺乏的方案[12]

小麦是分布最广的世界性粮食作物, 为人类提供约20%的蛋白质和21%的食物热量, 是人体膳食钙的主要来源。小麦作为全球35%~40%人群赖以生存的主要粮食之一, 是矿物质元素生物强化的重要对象[13,14]。小麦钙生物强化对提高小麦营养价值, 从而解决全球人口尤其是贫困地区人口由于钙缺乏造成的健康问题具有重要现实意义。因此, 本文从小麦籽粒钙元素含量的遗传差异、影响因素、其与相关性状关系以及分子调控机理的角度, 综述其研究进展, 为钙营养强化小麦种质资源创新、新品种选育与富钙小麦食品研究开发利用提供一定的参考。

1 小麦籽粒钙含量的测定方法

钙含量测定比较常见的方法有原子吸收光谱法(AAS)[15,16]、原子吸收分光光度计分析法(FAAS)[17,18]、电感耦合等离子体原子发射光谱法(ICP-AES)[19,20]和电感耦合等离子体质谱法(ICP-MS)[21]等。AAS方法具有快速、准确、不干扰等优点, 但需要繁琐的样品预处理过程[15]。FAAS方法, 样品的前处理是其分析结果的关键影响因素, 其中高温灰化法是最常用的前处理方法之一, 具有消化完全、消化时间长和操作较复杂等特点; 而盐酸浸提法具有操作简便、污染少和处理时间较短等特点。以上方法均存在费用高、预处理过程繁杂、易受到污染、难于对育种材料进行大规模分析和筛选等缺点[13,22]。相比以上方法, X-射线能谱仪法具有快速、准确、不需化学试剂和提取等操作步骤等优点, 适用于筛选富含必需矿质元素的育种材料或测定籽粒各部位矿质元素(除H和He元素外)组成及分布情况, 但只能测定元素的相对含量, 需标准样品才能测定绝对含量[23]。近年来逐渐得到科研工作者关注的X射线荧光光谱法(XRF), 具有样品前处理准备简便、多元素同时测定、重现性好、准确度高等优点[22], 已用于分析育种材料的矿质元素含量[24], 其中采用X-Supreme 8000 (Oxford Instrument plc, Abingdon, UK) 或 Bruker S2 Ranger (Bruker Corporation, Massachusetts, USA)仪器, 具有无损伤、低成本、高通量、高效率等优点[13]。钙元素不直接吸收近红外光, 但在植物体内与有机物结合使得钙元素可被近红外光谱技术(NIR)间接测定。利用NIR技术对大米、烟叶中钙元素的含量进行了测定分析, 分别应用修正的偏最小二乘回归分析(MPLS)和最小二乘支持向量机(LS-SVM)建立了预测模型[25,26], 可用于种质资源的快速测定和筛选。在试验和生产中, 测定小麦籽粒钙含量应根据具体情况选用适宜的测定方法。

2 小麦籽粒钙含量的差异及影响因素

2.1 小麦基因型间籽粒钙含量的差异

小麦籽粒钙含量受基因型、环境及两者互作的显著影响, 但基因型效应远大于基因型与环境互作效应[27,28,29,30]。不同基因型小麦种质籽粒钙含量的变异范围较宽, 基因型间存在显著差异。我国小麦微核心种质库的262份种质籽粒钙含量变异范围为290~976 mg kg-1 [19], 北方地区主推小麦品种为317~653 mg kg-1 [28], 黄淮麦区小麦骨干种质为40.79~954.80 mg kg-1 [31], 豫北地区主栽小麦品种为376.23~693.73 mg kg-1 [32], 长江中下游地区主推小麦品种和部分国内外引进小麦品种籽粒钙含量介于242.66~620.51 mg kg-1 [16]。山农483×川35050构建的小麦重组自交系群体籽粒钙含量范围为317~ 737 mg kg-1 [33]。中国15个小麦主要种植区以及俄罗斯等7个国家小麦种质籽粒钙含量分布范围为139.18~676.04 mg kg-1 [34]。欧洲小麦品种籽粒钙含量变异范围为288.2~647.5 mg kg-1 [30], 葡萄牙小麦种质为381~496 mg kg-1 [3], 美国小麦种质为242~ 765 mg kg-1 [29], 巴基斯坦小麦种质为295~ 455 mg kg-1 [35]。土耳其农家种籽粒钙含量为340~ 685 mg kg-1 [36], 其硬粒小麦品种为290~685 mg kg-1 [37]。山羊草属(Aegilops L. species)颖果钙含量高于普通小麦籽粒, 野生一粒小麦、二粒小麦和斯佩耳特小麦籽粒钙含量高于栽培种品种, 是富集钙的潜在种质资源[38]。人工合成六倍体小麦籽粒钙含量低于面包小麦品种[39], 变异范围为21.6~167.2 mg kg-1 [21]。有芒小麦品种籽粒钙含量高于无芒小麦品种[40]。彩色小麦籽粒钙含量高于普通白粒小麦[41]。通过测定分析, 筛选到了一些高钙含量小麦种质, 如徐麦856[28]、豫麦47[28]、郑麦9405[28]、NP164[16]、地方品种47[36]、Eyyubi[40]等, 可作为当地优良的高钙含量种质资源材料供育种利用。然而, 如何进一步评估和拓宽这类种质资源, 并借助遗传改良的方法生产富含钙营养元素并有益于人类健康的粮食, 这也成为作物科学和国际营养科学研究的一个热点领域。

2.2 小麦籽粒不同部位钙含量的差异

小麦籽粒和糊粉层中均富含钙元素, 胚乳层中钙含量比皮层和糊粉层低, 不同小麦品种籽粒各部位的钙含量存在遗传性差异[23,42]。钙含量在麸皮中最高, 变异幅度最大; 籽粒中次之; 面粉中最低[16]。籽粒钙含量是面粉中的1.11~2.31倍, 麸皮钙含量是面粉中的2.83~8.70倍, 麸皮钙含量是籽粒的1.48~5.48倍[16]

2.3 农艺措施对小麦籽粒钙含量的影响

在石灰性土壤中施用钙肥氯化钙可促进小麦干物质形成, 增加穗数和籽粒产量, 显著增加整株钙累积量, 但对籽粒钙含量无影响[18]; 但在酸性淋溶土中施用石灰, 显著提高了小麦籽粒钙含量[43]。无论氮肥施用量如何, 接种巴西固氮螺菌可增加小麦籽粒钙含量[44]。施用腐殖酸(85%腐殖酸)显著增加小麦生物产量和籽粒产量; 随着腐殖酸施用量增加, 显著降低小麦籽粒钙含量[45]。施用基于氨基酸的生物刺激素(AminoPrim和AminoHort)有助于提高小麦籽粒钙含量[46]。小麦与绿豆、大豆、秋豆轮作, 其籽粒钙含量增加; 随着施氮量增加, 小麦籽粒钙含量增加[47,48]。然而, 也有研究发现小麦等前茬作物对冬小麦籽粒钙含量无明显影响, 施氮肥对籽粒钙含量无影响[49,50,51]。叶面喷施较高浓度硒酸钠降低了小麦籽粒钙含量[52]。土壤施用锌肥显著提高了小麦籽粒钙含量[53], 但喷施叶面锌肥(ZnSO4·7H2O, 0.3%, w/v)降低了小麦籽粒钙含量[54]。剪叶遮光可提高小麦籽粒钙含量, 但降低了单穗钙产量[55]。与传统栽培方法相比, 地膜覆盖、秸秆还田和种植绿肥降低了旱地小麦籽粒钙含量[56]; 与施氮量较高的常规栽培相比, 少耕(覆盖耕作和免耕)和降低施氮量对小麦籽粒钙含量增加效应更好[57]。有机栽培管理, 尤其是不施可溶性肥料, 并没有引起小麦籽粒钙含量的急剧增加[58]。此外, 集约化种植制度提高了小麦产量, 但同时降低了其营养品质, 籽粒养分钙含量低[59]

3 小麦籽粒钙含量与其他性状的关系

3.1 小麦籽粒钙含量与主要农艺性状的关系

由于过去的小麦育种目标过分集中在产量和抗逆性改良, 忽视其籽粒矿物质元素含量, 在一定程度上导致育成的小麦品种籽粒矿物质含量较低[3]。小麦籽粒钙含量与千粒重、产量均呈显著负相关[29], 但也有研究发现小麦籽粒钙含量与千粒重呈显著正相关[37]。幼苗发育的第一阶段取决于种子中矿物质元素的含量[60]。二价钙离子(Ca2+)调节和控制与光合作用相关的气孔运动, 加速糖分运输, 增强光合效率[61]

3.2 小麦籽粒钙含量与品质和其他矿质元素的关系

测定不同小麦品种(系)籽粒钙含量和品质相关性状, 发现籽粒钙含量与粗蛋白含量、湿面筋和沉降值之间呈正相关, 但无显著性[20]。小麦籽粒钙含量与籽粒蛋白质含量、锌含量、铁含量、硫含量、磷含量、镁含量和锰含量呈显著正相关[21,29,37-38,62-63]

3.3 小麦籽粒钙含量与其生物有效性影响因子的关系

禾谷类作物(小麦、水稻等)籽粒中含有一些影响钙元素生物有效性的抗营养因子, 它们不仅能与钙形成螯合物, 而且通过调控机制能调节钙的吸收、转运以及在籽粒中的重新分配, 其中植酸是最主要的抗营养因子, 降低了钙的生物有效利用率[64,65]。小麦籽粒中钙主要以植酸盐螯合物形式存在, 在自然界中无法自行降解, 只能通过植酸酶分解为低磷肌醇衍生物和无机磷酸盐, 才能被人体加以有效利用[13,66]。植酸在作物抵抗生物和非生物胁迫中起着重要作用, 其含量在籽粒中保持在一定水平[67]。因此, 提高植酸酶活性可能是提高钙吸收利用率、解决钙含量缺乏问题的重要途径。

3.4 小麦籽粒钙含量与面粉钙含量的关系

小麦籽粒钙含量高, 面粉钙含量也高, 二者呈极显著正相关[16], 说明从籽粒钙含量高的小麦种质材料中有可能选育出面粉钙含量高的小麦品种。小麦磨粉即去除麦麸制成精粉。小麦粉的加工精度越高, 所含的麸皮和胚芽越少, 营养价值越低。利用生产线上取得的各系统小麦粉配制成不同出粉率的面粉, 发现当出粉率为35%~70%时, 面粉中钙含量保持一个较低且稳定的含量; 但当出粉率高于80%时, 其钙含量明显升高[68]。利用布勒试验磨粉机制备面粉, 随着出粉率的提高(66%~78%), 小麦面粉钙含量无显著变化[69]。因此, 在不影响面粉食用品质和加工品质的前提下, 适量降低面粉的精度, 提高面粉出粉率, 进而提高面粉中钙营养元素含量。

4 小麦籽粒钙含量调控的机制研究

4.1 小麦籽粒钙含量积累的生理基础与遗传机制研究

高钙型植物具有较高的钙富集能力, 其地上部分在低钙含量土壤中可维持较高的钙含量; 低钙型植物反之亦然[70]。蒸腾作用、导管壁上的阳离子吸附及组织水势的变化影响植物体内钙的运输和分配。尽管在细胞内钙转运研究取得了相当大的进展, 但迄今为止, 籽粒中高钙含量积累的分子基础研究报道很少[61]。小麦籽粒钙含量主要取决于根系吸收、体内运输和再分配以及在种子中转移和积累等过程[71]。这些过程中的每一个都很可能受到多个基因控制, 使得钙在籽粒中的积累是一个复杂的多基因现象。随着灌浆进程的推进, 小麦籽粒钙含量和钙累积速率逐渐降低, 但籽粒钙总量逐渐提高; 叶片和叶鞘钙不能向籽粒转运, 籽粒钙主要来自于根系的转运[72]。钙在韧皮部迁移水平显著影响其在籽粒中的含量和位置, 而钙在韧皮部移动性差, 不易到达籽粒胚乳, 部分残留在小麦籽粒种皮上[53]。到目前为止, 对小麦籽粒中钙含量转运、积累的生理基础与遗传机制还不是很清楚。

4.2 小麦籽粒钙含量基因定位研究

近十年来, 随着营养基因组学的发展, 营养生物学科学得到了广泛的发展和进步。在营养隐形饥饿日益严重的时代, 必须利用谷物的营养特性来开发具有新营养价值的谷物[59]。从目前育种目标来看, 利用常规育种策略已培育出许多具有多种营养丰富特性的潜在品种。然而, 小麦传统育种技术主要通过表型性状对基因型进行间接选择, 需要丰富的育种经验和较长时间; 同时籽粒钙含量性状受多因素影响, 选择效率低。基因组学辅助育种就为营养生物学研究开辟一条新的途径。

数量性状基因座(QTL)分析是解析小麦矿物质含量性状的有效方法, 广泛应用于作物数量性状遗传研究。利用QTL分析能有效检测与小麦籽粒钙含量的相关基因位点, 从而提高富钙小麦育种的效率。目前, 关于小麦籽粒钙含量的基因定位研究较少。Peleg等[73]通过连锁分析定位到9个控制籽粒钙含量的QTL, 位于1A、4A、6A、2B、4B、5B、6B和7B染色体(表1), 解释表型变异1.0%~21.0%; 除了4B染色体, 位于其他染色体上的QTL均在所有环境中检测到; 6B染色体上的QTL位点同时与钙、锌和铁含量相关; 7B染色体上的QTL位点同时与钙、籽粒蛋白质含量、钾和锰含量相关, 说明这些QTL同时可用于改良籽粒钙、锌、铁、钾和锰含量。Shi等[74]在1A、2A、7B和2D染色体上定位到4个控制籽粒钙含量QTL (表1), 解释表型变异5.8%~14.0%; 在1A染色体上检测到的QTL, 其遗传距离位于10.1~10.9 cM之间, 这与Peleg等[73]报道的QTL (5.0~58.7 cM)的异同还有待于进一步验证; 在7B染色体上检测到的QTL (0~9.7 cM)与Peleg等[73]报道的遗传距离位于15.2~30.8 cM之间的QTL不同。Alomari等[30]以353份欧洲小麦品种为材料, 对籽粒钙含量进行全基因组关联分析, 共发现485个与籽粒钙含量显著关联的单核苷酸多态性(SNP)标记, 分布在除3D、4B和4D以外的所有染色体上, 其中在2个环境和BLUE值(阈值为-log10 (P-value≥3))中均与籽粒钙含量显著关联的标记位于2A、3A、5A、6A、5B和5D染色体上(表1); 在这6条染色体上与籽粒钙含量显著相关的SNP位点附近找到了41个与钙吸收或转运相关的候选基因。植物钙转运蛋白已被证实了可增加胡萝卜等可食根的钙含量[75]。在2A和6A染色体上检测的位点与Shi等[74]和Peleg等[73]报道的不同。Bhatta等[21]通过对123份人工合成六倍体小麦种质的籽粒钙含量进行全基因关联分析, 在3A、6A、7A、1B、2B、3B、6B、2D和3D染色体上发现了15个与籽粒钙含量显著关联的SNP标记(表1), 解释表型变异2.7%~21.5%。由于所用群体(RILs、DHs或自然群体)、标记不同(AFLP、SSR、DArTs、90K)或准确位置信息缺乏或IWGSC RefSeq v1.0以外的其他版本参考小麦基因组使用, 在3A染色体上定位的QTL与Alomari等[30]、6A染色体上定位的QTL与Peleg等[73]和Alomari等[30]以及在2B、6B染色体上定位的QTL与Peleg等[73]的异同还有待于进一步验证。Shen等[63]在RILs群体中发现了位于4B染色体上调控钾、钙和镁含量的QTL位点, 但没有定位到控制籽粒钙含量的QTL。以上研究仅限于初步QTL定位水平, 尚未有精细定位的研究结果, 也不清楚调控小麦籽粒钙含量的基因是什么。钙依赖性蛋白激酶(CDPKs)作为植物细胞中钙浓度变化的关键传感器, 在小麦中鉴定出20个CDPK基因[76]。近年来, 在拟南芥、穇子(finger millet)和水稻上有关籽粒钙含量的研究较多, 不仅开发了用于检测籽粒钙含量的EST-SSR标记和SSR标记[77,78]; 同时也发现了一些调控籽粒钙含量基因, 如CAX[61,79-80]TPCCaMKEcCIPK基因家族[59]。相对于籽粒钙含量, 小麦籽粒中铁、锌、硒元素基因定位的研究进展较快, 不仅QTL定位研究较多[11], 而且还成功克隆到一个提高籽粒蛋白质、铁和锌含量而对产量无影响的基因GPC-B1[81]

Table 1
表1
表1小麦籽粒钙含量QTL的汇总
Table 1Summary of QTL detected for calcium content in wheat grains
染色体
Chr.
位置
Position (cM or bp)
标记名称
Molecular marker or interval marker
群体
Population
参考文献
References
1A31.7 ± 26.7gwm3083RILs群体RILs populationPeleg et al.[73]
4A28.7 ± 2.4gwm610
6A106.9 ± 20.2wPt-0139
2B86.5 ± 6.9wPt-6576
4B88.1 ± 9.7wPt-9393
5B54.2 ± 5.9gwm371
6B22.6 ± 28.1wPt-11506
6B145.4 ± 20.7gwm219
7B23.0 ± 7.8gwm263
1A10.1-10.9P3156.2-WMC59DHs群体DHs populationShi et al.[74]
2A15.7-16.6WMC27.2-P5166.2
7B0-9.7P1123.2-Xgwm611
2D1.5-20.8WMC41-WMC170
2Aa64.3RAC875_c24517_558, Kukri_c40035_258, AX-94881950, AX-94850365, AX-94560505, AX-94544896, AX-94404038自然群体Natural populationAlomari et al.[30]
2Aa66.6BS00049644_51, AX-95169653, AX-94940052, AX-94536561
3Aa109RFL_Contig1175_354
5Aa117.7wsnp_Ex_c20899_30011827, AX-95077733
5Aa115.5RAC875_c8642_231
6Aa37.3wsnp_Ex_c17575_26300030, wsnp_Ex_c17575_26299925, Tdurum_contig62141_496, Kukri_rep_c104648_439, Kukri_c35661_63, AX-94415776
5Ba75.5GENE-0168_7
5Ba78.7RAC875_c30011_426, BS00062731_51
5Ba100.9AX-94547820, AX-94452355
5Ba101.7AX-94541836
5Ba103.2AX-94644169
5Ba149.8snp_CAP8_c1210_739429, CAP7_c5481_96
5Da167Jagger_c8037_96
染色体
Chr.
位置
Position (cM or bp)
标记名称
Molecular marker or interval marker
群体
Population
参考文献
References
3A593702925S3A_593702925人工合成六倍体小麦群体
A population of synthetic
hexaploid wheat
Bhatta et al.[21]
6A50345873S6A_50345873
6A592562315S6A_592562315
7A34297426S7A_34297426
1B6867825S1B_6867825
2B502127437S2B_502127437
3B548275272S3B_548275272
3B655010350S3B_655010350
6B109760004S6B_109760004
6B32333184S6B_32333184
6B576856920S6B_576856920
6B658724336S6B_658724336
2D631996199S2D_631996199
3D45073985S3D_45073985
a在2个环境和BLUE值(阈值为-log10 (P-value ≥3))中均与籽粒钙含量显著关联的标记。
a Consistently significant markers were detected in the two environments and BLUEs values with threshold of -log10 (P-value ≥3).

新窗口打开|下载CSV

4.3 小麦籽粒钙含量根际工程研究

钙是以钙离子形式从小麦根系进入小麦根部, 然后再转移到地上部分(如种子)。农药和化肥的长期持续使用, 土壤肥力和稳定性受到严重影响, 最终导致作物养分利用效率低下[59]。根瘤菌和内生菌是一组重要的农用土壤微生物区系, 根据功能活性分为生物化肥、植物生长调节物质、植物根际生物修复剂和生物农药[59,82]。根际工程主要是借助生物介质即促进植物生长的根瘤菌和内生菌等来提高作物养分利用效率, 其中根瘤菌可直接通过辅助营养同化(如钙等必需矿物质)或调解作物激素含量, 减少各种病原菌及其毒素对作物生长发育的影响[59]。研究发现生物接种不同内生菌通过提高土壤肥力、细胞伸长和改变重金属胁迫下土壤矿物质的生物有效性来刺激矿物质获取、生物量增加和植物加速修复。

5 问题与展望

5.1 籽粒富集钙元素小麦种质筛选与创制

自绿色革命实现以来, 小麦单产明显增加, 也导致了必需矿物质营养元素含量大大降低, 即“稀释效应”[3]。随着人们对矿物质元素在人类健康中所起作用的认识不断提高, 相关的生物强化项目在国内外相继展开。小麦籽粒中含有钙等各种具有重要生理效应的功能性因子。选育和利用富钙小麦品种是克服钙元素缺乏最经济有效的途径, 而籽粒富集钙元素小麦种质资源的筛选、研究与利用是富钙小麦育种的重要基础。小麦籽粒钙含量在不同基因型间存在明显差异, 这为富钙小麦新品种的筛选及选育提供了广泛的种质资源和空间。现有的大多数高钙含量小麦种质筛选研究仅在一年或一点开展的, 因此还需在不同生态区, 进行多年多点鉴定试验, 筛选出籽粒钙含量高的小麦品种(系), 为富钙小麦育种提供优良的种质资源, 为合理选配亲本提供参考。同时, 以高钙含量种质材料为基础, 对各地大面积推广种植的代表性品种进行多种方式的改良, 创制出中间材料, 为富钙小麦新品种培育提供优良的育种材料。

5.2 常规育种技术与生物技术紧密结合提高小麦籽粒钙含量

人类所需的营养, 主要依赖于植物性食品, 即从主粮作物可食部分获取足够的矿物质、蛋白质和维生素等必不可少的营养素。通过农艺生物强化或常规育种技术增加主粮作物的矿物质元素含量, 仍是全球科学家的一项艰巨任务。尽管已取得了一些成绩, 但在大多数情况下, 仍未达到预期目标。为了使作物最大程度地吸收养分并将其转移到不同的经济器官, 科学家们定制并实施了一些生物强化策略, 但在当前的农业和环境问题上, 这些方法并不十分有效。

小麦籽粒是最重要的经济器官, 其籽粒钙含量与小麦产量和品质密切相关, 是品种选育和品质评估的重要依据之一。通过遗传改良途径进行小麦钙营养强化, 需要常规育种技术与生物技术紧密结合, 加快育种步伐, 提高富钙小麦育种效率。生物技术主要包括QTL定位分析、分子标记辅助选择和基因组选择(genomic selection)。其研究思路是在种质资源筛选的基础上, 利用目标性状的分离群体, 通过QTL作图鉴定, 获得与控制小麦籽粒钙含量QTL紧密连锁的分子标记, 并对控制籽粒钙含量QTL进行精细定位和功能分析, 克隆到控制小麦籽粒钙含量的主效基因, 最终培育出抗逆、广适、高产的健康型小麦新品种。目前, 选育并推广种植了锌生物强化小麦品种Zinc Shakti、Zincol 2016[11]和富锌小麦品种中麦175 [28]

5.3 富钙小麦食品开发利用

随着生活水平普遍提高和医疗保健意识增强, 人们对作为主粮作物的小麦提出了新要求, 其品质营养状况越来越成为关注的焦点。尽管食物供需稳定增长, 但世界上大部分人口尤其发展中国家人口仍无法从食物中获得足够的营养, 且这些食物总体营养成分较差[59]。因此, 选育富钙小麦新品种的同时, 还应改良富钙小麦食品加工工艺和开发富钙小麦食品。除了铜元素外, 所有矿物质营养元素主要存在于小麦麸皮和胚芽中, 因此生产生物强化面食需使用全麦粉[83]。富钙小麦加工成全麦粉或将其全麦粉与精制面粉配粉制成健康营养食品, 以提高钙元素的生物有效性, 这在缺乏膳食纤维的饮食结构中或贫困地区显得尤为重要。钙含量在小麦籽粒不同部位存在差异, 因对富钙小麦籽粒不同部位分别进行加工和食品开发是一个重要发展方向。麦胚可直接工业剥去、压片后制成富钙营养食品。胚芽可制成矿物质营养元素丰富的胚芽超微粉。麦麸可制作纤麸食品或直接作为掺粉提高食品中钙含量。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Weaver C M, Peacock M. Calcium
Adv Nutr, 2019,10:546-548.

DOI:10.1093/advances/nmy086URLPMID:30915443 [本文引用: 3]
Calcium is the fifth most abundant element in the body with >99% residing in the skeleton as hydroxyapatite, a complex calcium phosphate molecule. This mineral supplies the strength to bones that support locomotion, but it also serves as a reservoir to maintain serum calcium concentrations. Calcium plays a central role in a wide range of essential functions. Its metabolism is regulated by 3 major transport systems: intestinal absorption, renal reabsorption, and bone turnover. Calcium transport in these tissues is regulated by a sophisticated homeostatic hormonal system that involves parathyroid hormone, and 1,25-dihydroxyvitamin D in response to decreased serum ionized calcium, detected by the calcium-sensing receptor (1).

Kumssa D B, Joy E J M, Ander E L, Watts M J, Young S D, Walker S, Broadley M R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent
Sci Rep, 2015,5:10974.

DOI:10.1038/srep10974URLPMID:26098577 [本文引用: 1]
Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 +/- 211 and 16 +/- 3 mg capita(-1) d(-1) (+/- SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge.

Gomez-Coronado F, Almeida A S, Santamaria O, Cakmak I, Poblaciones M J. Potential of advanced breeding lines of bread making wheat to accumulate grain minerals (Ca, Fe, Mg and Zn) and low phytates under Mediterranean conditions
J Agron Crop Sci, 2019,205:341-352.

[本文引用: 4]

顾景范. 《中国居民营养与慢性病状况报告(2015)》解读
营养学报, 2016,38:525-529.

[本文引用: 1]

Gu J F. Interpretation of “Report on Nutrition and Chronic Diseases of Chinese Residents (2015)”
Acta Nutr Sin, 2016,38:525-529 (in Chinese).

[本文引用: 1]

Bouillon R, Antonio L. Nutritional rickets: historic overview and plan for worldwide eradication
J Steroid Biochem, 2020,198:105563.

[本文引用: 1]

邱贵兴. 老年骨质疏松性骨折的治疗策略
中华老年骨科与康复电子杂志, 2015,1(1):1-5.

[本文引用: 1]

Qiu G X. Treatment strategies for osteoporotic fractures in the elderly
Chin J Geriatr Orthop Rehabil (Electronic Edn), 2015,1(1):1-5 (in Chinese).

[本文引用: 1]

Weaver C M, Heaney R P. Calcium in Human Health
Totowa, New Jersey: Humana Press, 2006. pp 1-3.

[本文引用: 1]

Benjakul S, Karnjanapratum S. Characteristics and nutritional value of whole wheat cracker fortified with tuna bone bio-calcium powder
Food Chem, 2018,259:181-187.

DOI:10.1016/j.foodchem.2018.03.124URLPMID:29680042 [本文引用: 1]
Whole wheat cracker fortified with tuna bone bio-calcium (Bio-Ca) powder was developed as health-promoting food rich in calcium. Fortification with different levels of Bi-Ca, over the range of 0-50% of whole wheat flour (w/w) on quality and sensory properties of crackers, were determined. Color, thickness, weight and textural properties of crackers varied with the different levels of Bio-Ca powder added, but it was found that up to 30% could be added without detrimental effect on sensory properties. Scanning electron microscopic images showed that the developed crackers were less porous and had a denser structure, compared to the control. Based on scanning electron microscopy-energy dispersive X-ray spectroscopic (SEM-EDX), the cracker containing Bio-Ca powder had calcium and phosphorous distribution with higher intensity, compared to the control. The fortified crackers were rich in calcium and phosphorous with higher protein content but lower fat, carbohydrate, cholesterol and energy value, compared to the control.

Bouis H E, Saltzman A. Improving nutrition through biofortification: a review of evidence from harvestplus, 2003 through 2016
Glob Food Secur, 2017,12:49-58.

[本文引用: 1]

Cheema S A, Rehman H U, Kiran A, Bashir K, Wakeel A. Progress and prospects for micronutrient biofortification in rice/wheat
In: Hossain M A, Kamiya T, Burritt D J, Tran L S P, Fujiwara T, eds. Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. NY, US: Academic Press, 2018. pp 261-278.

[本文引用: 1]

Saini D K, Devi P, Kaushik P. Advances in genomic interventions for wheat biofortification: a review
Agronomy-Basel, 2020,10(1):62.

[本文引用: 3]

Hoekenga O. Genomics of mineral nutrient biofortification: calcium, iron and zinc
In: Tuberosa R, Graner A, Frison E, eds. Genomics of Plant Genetic Resources. Springer Science + Business Media Dordrecht, 2014. pp 431-454.

[本文引用: 1]

张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展
中国农业科学, 2016,49:4284-4298.

[本文引用: 4]

Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Progress in research on genetic improvement of nutrition and health qualities in wheat
Sci Agric Sin, 2016,49:4284-4298 (in Chinese with English abstract).

[本文引用: 4]

何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步
农学学报, 2018,8(1):99-106.

[本文引用: 1]

He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China
J Agric, 2018,8(1):99-106 (in Chinese with English abstract).

[本文引用: 1]

王秀敏, 谢令琴, 刘艳苏, 胡珍荣. 原子吸收光谱法测定小麦品种子粒中钾钠钙镁的含量
河北农业大学学报, 2003,26(4):90-97.

[本文引用: 2]

Wang X M, Xie L Q, Liu Y S, Hu Z R. Determination of the kalium, sodium, calcium and magnesium content in wheat seeds by atomic absorption spectroscopy
J Agric Univ Hebei, 2003,26(4):90-97 (in Chinese with English abstract).

[本文引用: 2]

张明艳, 郁一凡, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 不同基因型小麦籽粒、面粉和麸皮中Ca和Zn含量的差异
麦类作物学报, 2011,31:240-245.

[本文引用: 6]

Zhang M Y, Yu Y F, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Differences of Calcium and Zinc contents among four, grain and bran of different wheat varieties
J Triticeae Crops, 2011,31:240-245 (in Chinese with English abstract).

[本文引用: 6]

刘三才, 李为喜, 张晓芳, 朱志华. 小麦强化营养粉中钙、锌含量的盐酸浸提快速测定
麦类作物学报, 2007,27(1):63-66.

[本文引用: 1]

Liu S C, Li W X, Zhang X F, Zhu Z H. Rapid determination of Calcium and Zinc in nutrient enrichment flour of wheat with hydrochloric acid extraction
J Triticeae Crops, 2007,27(1):63-66 (in Chinese with English abstract).

[本文引用: 1]

高雅洁, 王朝辉, 王森, 靳静静, 曹寒, 戴健, 于荣. 石灰性土壤施用氯化钙对冬小麦生长及钙锌吸收的影响
植物营养与肥料学报, 2015,21:719-726.

[本文引用: 2]

Gao Y J, Wang C H, Wang S, Jin J J, Cao H, Dai J, Yu R. Effects of calcium chloride on winter wheat yield and uptake of Ca and Zn in calcareous soil
J Plant Nutri Fert, 2015,21:719-726 (in Chinese with English abstract).

[本文引用: 2]

石荣丽, 邹春琴, 芮玉奎, 张学勇, 夏晓平, 张福锁. ICP-AES 测定中国小麦微核心种质库籽粒矿质养分含量
光谱学与光谱分析, 2009,29:1104-1107.

[本文引用: 2]

Shi R L, Zou C Q, Rui Y K, Zhang X Y, Xia X P, Zhang F S. Application of ICP-AES to detecting nutrients in grain of wheat core collection of China
Spectros Spec Anal, 2009,29:1104-1107 (in Chinese with English abstract).

[本文引用: 2]

季英苗. 不同小麦品种(系)中主要矿质元素的含量比较及与品质的关系
中国科学院成都生物研究所硕士学位论文, 四川成都, 2009.

[本文引用: 2]

Ji Y M. Study on the Determination and Correlation Analysis with Wheat Quality of the Contents of the Main Mineral Elements in Different Species of Wheat
MS Thesis of Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China, 2009 (in Chinese with English abstract).

[本文引用: 2]

Bhatta M, Baenziger P S, Waters B M, Poudel R, Belamkar V, Poland J, Morgounov A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat
Int J Mol Sci, 2018,19:3237.

[本文引用: 5]

李刚, 郑若锋. X射线荧光光谱法测定植物样品中12种元素含量
理化检验: 化学分册, 2012,48:1433-1437.

[本文引用: 2]

Li G, Zheng N F. XRFS determination of 12 elements in plant samples
Physic Test Chem Anal (Part B: Chem Anal)), 2012,48:1433-1437 (in Chinese with English abstract).

[本文引用: 2]

李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 小麦籽粒不同部位的矿质元素组成与其含量差异
植物生理学报, 2007,43:1077-1081.

[本文引用: 2]

Li C Y, Feng C N, Wang Y L, Zhang R, Guo W S, Zhu X K, Peng Y X. Differences of mineral elements compositions and their contents among different positions of wheat grains
Plant Physio J, 2007,43:1077-1081 (in Chinese with English abstract).

[本文引用: 2]

王广西, 胡燕, 罗琼, 李丹, 陈诚, 赖万昌, 翟娟. 波长色散X射线荧光光谱法分析小麦籽粒中矿质元素
分析试验室, 2017,36:663-666.

[本文引用: 1]

Wang G X, Hu Y, Luo Q, Li D, Chen C, Lai W C, Zhai J. Analysis of mineral elements in wheat grains by wavelength dispersive X-ray fluorescence spectrometry
Chin J Anal Lab, 2017,36:663-666 (in Chinese with English abstract).

[本文引用: 1]

田旷达, 邱凯贤, 李祖红, 吕亚琼, 张秋菊, 熊艳梅, 闵顺耕. 近红外光谱法结合最小二乘支持向量机测定烟叶中钙、镁元素
光谱学与光谱分析, 2014,34:3262-3266.

[本文引用: 1]

Tian G D, Qiu K X, Li Z H, Lyu Y Q, Zhang Q J, Xiong Y M, Min S G. Determination of calcium and magnesium in tobacco by near-infrared spectroscopy and least squares-support vector machine
Spectros Spec Anal, 2014,34:3262-3266.

[本文引用: 1]

蒋淑丽. 稻米矿质元素分析及其近红外测定技术的研究
浙江大学博士学位论文, 浙江杭州, 2007. pp 68-81.

[本文引用: 1]

Jiang S L. The Study of Determination and the Calibration Model Optimization by Near Infrared Reflectance Spectroscopy (NIRS) for Mineral Element Contents in Rice (Oryza stativa L.)
PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007. pp 68-81 (in Chinese with English abstract).

[本文引用: 1]

王秀敏, 许民安, 常淑惠, 谷俊涛, 谢令琴. 冬小麦品种子粒钙含量的遗传研究
河北农业大学学报, 2002,25(4):25-28.

[本文引用: 1]

Wang X M, Xu M A, Chang S H, Gu J T, Xie L Q. Heredity study on grain calcium content of winter wheat varieties
J Agric Univ Hebei, 2002,25(4):25-28 (in Chinese with English abstract).

[本文引用: 1]

Zhang Y, Song Q, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Monasterio I. Mineral element concentrations in grains of Chinese wheat cultivars
Euphytica, 2010,174:303-313.

[本文引用: 6]

Guttieri M J, Baenziger P S, Frels K, Carver B, Arnall B, Waters B M. Variation for Grain mineral concentration in a diversity panel of current and historical great plains hard winter wheat germplasm
Crop Sci, 2015,55:1035-1052.

[本文引用: 4]

Alomari D Z, Eggert K, von Wiren N, Pillen K, Roder M S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars
Front Plant Sci, 2017,8:1797.

DOI:10.3389/fpls.2017.01797URLPMID:29163559 [本文引用: 6]
Mineral concentrations in cereals are important for human health, especially for people who depend mainly on consuming cereal diet. In this study, we carried out a genome-wide association study (GWAS) of calcium concentrations in wheat (Triticum aestivum L.) grains using a European wheat diversity panel of 353 varieties [339 winter wheat (WW) plus 14 of spring wheat (SW)] and phenotypic data based on two field seasons. High genotyping densities of single-nucleotide polymorphism (SNP) markers were obtained from the application of the 90k iSELECT ILLUMINA chip and a 35k Affymetrix chip. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure the calcium concentrations of the wheat grains. Best linear unbiased estimates (BLUEs) for calcium were calculated across the seasons and ranged from 288.20 to 647.50 among the varieties (mug g(-1) DW) with a mean equaling 438.102 (mug g(-1) DW), and the heritability was 0.73. A total of 485 SNP marker-trait associations (MTAs) were detected in data obtained from grains cultivated in both of the two seasons and BLUE values by considering associations with a -log10 (P-value) >/=3.0. Among these SNP markers, we detected 276 markers with a positive allele effect and 209 markers with a negative allele effect. These MTAs were found on all chromosomes except chromosomes 3D, 4B, and 4D. The most significant association was located on chromosome 5A (114.5 cM) and was linked to a gene encoding cation/sugar symporter activity as a potential candidate gene. Additionally, a number of candidate genes for the uptake or transport of calcium were located near significantly associated SNPs. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally variable traits in genetically highly diverse variety panels. The research demonstrates the feasibility of the GWAS approach for illuminating the genetic architecture of calcium-concentration in wheat grains and for identifying putative candidate genes underlying this trait.

傅兆麟, 王海燕, 郭孙黎, 宋创业, 张铮. 黄淮麦区主要小麦种质资源钙含量测定
淮北煤炭师范学院学报(自然科学版), 2008,29(1):41-44.

[本文引用: 1]

Fu Z L, Wang H Y, Guo S L, Song C Y, Zhang Z. The determing report of Ca content in seed for the main wheat idioplasm resources in Huanghai wheat area
J Huaibei Coal Indus Tech Coll (Nat Sci), 2008,29(1):41-44 (in Chinese with English abstract).

[本文引用: 1]

夏瑞雪, 魏帅, 郭波莉, 曹东梅. 豫北地区小麦籽粒矿质元素含量分析
核农学报, 2017,31:516-523.

[本文引用: 1]

Xia R X, Wei S, Guo B L, Cao D M. Analysis of mineral element content of wheat in northern area of Henan province
J Nucl Agric Sci, 2017,31:516-523 (in Chinese with English abstract).

[本文引用: 1]

孙宪印, 田枫, 米勇, 牟秋焕, 王瑞霞, 王超, 亓晓蕾, 钱兆国, 吴科, 李斯深. 小麦重组自交系群体籽粒主要矿质元素含量的分析
麦类作物学报, 2016,36:872-877.

[本文引用: 1]

Sun X Y, Tian F, Mi Y, Mou Q H, Wang R X, Wang C, Qi X L, Qian Z G, Wu K, Li S S. Analysis of major mineral elements concentration in grain of wheat recombinant inbred lines
J Triticeae Crops, 2016,36:872-877 (in Chinese with English abstract).

[本文引用: 1]

王健胜, 吴政卿, 周正富, 马爱锄, 刘军, 晁岳恩, 李文旭, 王亚欢, 李静婷, 赵干卿, 雷振生. 国内外小麦种质主要矿质元素含量的评价分析
分子植物育种, 2018,16:7550-7557.

[本文引用: 1]

Wang J S, Wu Z Q, Zhou Z F, Ma A C, Liu J, Chao Y E, Li W X, Wang Y O, Li J T, Zhao G Q, Lei Z S. Evaluation and analysis of major mineral elements content in domestic and foreign wheat germplasm
Mol Plant Breed, 2018,16:7550-7557 (in Chinese with English abstract).

[本文引用: 1]

Rehman A, Farooq M, Nawaz A, Al-Sadi A M, Al-Hashmi K S, Nadeem F, Ullah A. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential
J Sci Food Agric, 2018,98:4842-4836.

[本文引用: 1]

Akcura M, Kokten K. Variations in grain mineral concentrations of Turkish wheat landraces germplasm
Qual Assur Saf Crop, 2017,9(2):1-8.

[本文引用: 2]

Hocaolu O, Akcura M, Kaplan M. Changes in the grain element contents of durum wheat varieties of Turkey registered between 1967-2010
Commun Soil Sci Plan, 2020,51:431-439.

[本文引用: 3]

Balint A F, Kovacs G, Erdei L, Sutka J. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species
Cereal Res Commun, 2001,29:375-382.

[本文引用: 2]

Calderini D F, Ortiz-Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat?
Euphytica, 2003,134:169-178.

[本文引用: 1]

Pongrac P, Arcon I, Castillo-Michel H, Vogel-Mikus K. Mineral element composition in grain of awned and awnletted wheat (Triticum aestivum L.) cultivars: tissue-specific iron speciation and phytate and non-phytate ligand ratio
Plants-Basel, 2020,9(1):79.

[本文引用: 2]

胡秋辉, 陈历程, 吴莉莉, 曹延松, 程万和. 黑小麦营养成分分析及其深加工制品前景展望
食品科学, 2001,22(12):50-52.

[本文引用: 1]

Hu Q H, Chen L C, Wu L L, Cao Y S, Cheng W H. Nutritional components analysis of the rye and its prospects for further processed products
Food Sci, 2001,22(12):50-52 (in Chinese with English abstract).

[本文引用: 1]

Nath M, Roy P, Shukla A, Kumar A. Spatial distribution and accumulation of calcium in different tissues, developing spikes and seeds of finger millet genotype
J Plant Nutr, 2013,36:539-550.

[本文引用: 1]

Chauhan N, Sankhyan N K, Sharma R P, Singh J, Gourav . Effect of long-term application of inorganic fertilizers, farm yard manure and lime on wheat (Triticum aestivum L.) productivity, quality and nutrient content in an acid alfisol
J Plant Nutr, 2020,43:2569-2578.

[本文引用: 1]

Galindo F S, Teixeira M C M, Buzetti S, Santini J M K, Boleta E H M, Rodrigues W L. Macronutrient accumulation in wheat crop (Triticum aestivum L.) with Azospirillum brasilense associated with nitrogen doses and sources
J Plant Nutr, 2020,43:1057-1069.

[本文引用: 1]

Dincsoy M, Sonmez F. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties
J Plant Nutr, 2019,42:2757-2772.

[本文引用: 1]

Popko M, Michalak I, Wilk R, Gramza M, Chojnacka K, Gorecki H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat
Molecules, 2018,23:470.

[本文引用: 1]

李可懿, 王朝辉, 赵护兵, 赵娜, 高亚军, Lyons G. 黄土高原旱地小麦与豆科绿肥轮作及施氮对小麦产量和籽粒养分的影响
干旱地区农业研究, 2011,29(2):110-116.

[本文引用: 1]

Li K Y, Wang Z H, Zhao H B, Zhao N, Gao Y J, Lyons G. Effect of rotation with legumes and N fertilization on yield and grain nutrient contents of wheat in dryland of the Loess Plateau
Agric Res Arid Areas, 2011,29(2):110-116 (in Chinese with English abstract).

[本文引用: 1]

Klikocka H, Marks M, Barczak B, Szostak B, Podlesna A, Podlesny J. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios
Open Chem, 2018,16:1059-1065.

[本文引用: 1]

Pszczolkowska A, Okorski A, Olszewski J, Fordonski G, Krzebietke S, Charenska A. Effects of pre-preceding leguminous crops on yield and chemical composition of winter wheat grain
Plant Soil Environ, 2018,64:592-596.

[本文引用: 1]

Wanic M, Denert M, Trede K. Effect of forecrops on the yield and quality of common wheat and spelt wheat grain
J Elementol, 2019,24:369-383.

[本文引用: 1]

Hamner K, Weih M, Eriksson J, Kirchmann H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat
Field Crops Res, 2017,213:118-129.

[本文引用: 1]

孙发宇, 李长成, 王安, 李韬. 叶面喷施硒酸钠对不同小麦品种(系)籽粒硒及其他矿质元素含量的影响
麦类作物学报, 2017,37:559-564.

[本文引用: 1]

Sun F Y, Li C C, Wang A, Li T. Effect of sodium selenate application on concentrations of selenium and other minerals in grains of different wheat genotypes
J Triticeae Crops, 2017,37:559-564 (in Chinese with English abstract).

[本文引用: 1]

Pongrac P, Kreft I, Vogel-Mikus K, Regvar M, Germ M, Vavpetic P, Grlj N, Jeromel L, Eichert D, Budic B, Pelicon P. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum L.) grain
J R Soc Interface, 2013,10:20130296.

URLPMID:23676898 [本文引用: 2]

Zhang P P, Ma G, Wang C, Zhu Y J, Guo T C. Mineral elements bioavailability in milling fractions of wheat grain response to zinc and nitrogen application
Agron J, 2019,111:2504-2511.

[本文引用: 1]

索全义, 王俊超, 索凤兰. 小麦开花后不同光合器官对籽粒品质的影响
麦类作物学报, 2009,29:275-278.

[本文引用: 1]

Suo Q Y, Wang J C, Suo F L. Effect of different photosynthesis organs on the quality of wheat grains after anthesis
J Triticeae Crops, 2009,29:275-278 (in Chinese with English abstract).

[本文引用: 1]

何红霞. 栽培模式对旱地小麦籽粒产量和养分吸收利用的影响
西北农林科技大学硕士学位论文, 陕西杨凌, 2018.

[本文引用: 1]

He H X. Wheat Grain Yield and Its Nutrient Update and Utilization Affected by Cultivation Patterns in Dryland
MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).

[本文引用: 1]

Dolijanovic Z, Nikolic S R, Kovacevic D, Djurdjic S, Miodragovic R, Todorovic M J, Djordjevic J P. Mineral profile of the winter wheat grain: effects of soil tillage systems and nitrogen fertilization
Appl Ecol Env Res, 2019,17:11757-11771.

[本文引用: 1]

Ryan M H, Derrick J W, Dann P R. Grain mineral concentrations and yield of wheat grown under organic and conventional management
J Sci Food Agric, 2004,84:207-216.

[本文引用: 1]

Chandra A K, Kumar A, Bharati A, Joshi R, Agrawal A, Kumar S. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops
3 Biotech, 2020,10(2):2.

[本文引用: 7]

Vreugdenhil D, Aarts M G M, Koornneef M, Nelissen H, Ernst W H O. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana
Plant Cell Environ, 2004,27:828-839.

[本文引用: 1]

Singh U M, Metwal M, Singh M, Taj G, Kumar A. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content
Gene, 2015,566:37-46.

URLPMID:25869323 [本文引用: 3]

张勇, 王德森, 张艳, 何中虎. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析
中国农业科学, 2007,40:1871-1876.

[本文引用: 1]

Zhang Y, Wang D S, Sun Y, He Z H. Variation of major mineral elements concentration and their relationships in grain of Chinese wheat
Sci Agric Sin, 2007,40:1871-1876 (in Chinese with English abstract).

[本文引用: 1]

Shen X, Yuan Y P, Zhang H, Guo Y, Zhao Y, Li S S, Kong F M. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments
Genes, 2019,10:607.

[本文引用: 2]

Ilarslan H, Palmer R G, Horner H T. Calcium oxalate crystals in developing seeds of soybean
Ann Bot, 2001,88:243-257.

DOI:10.1006/anbo.2001.1453URL [本文引用: 1]

Rao C K, Annadana S. Nutrient biofortification of staple food crops: technologies, products and prospects
In: Benkeblia N eds. Phytonutritional Improvement of Crops. UK: John Wiley & Sons Ltd, 2017. pp 113-118.

[本文引用: 1]

Oh B C, Choi W C, Park S, Kim Y O, Oh T K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases
Appl Microbiol Biotechnol, 2004,63:362-372.

DOI:10.1007/s00253-003-1345-0URLPMID:14586576 [本文引用: 1]
Phytases are a special class of phosphatase that catalyze the sequential hydrolysis of phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are added to animal feedstuff to reduce phosphate pollution in the environment, since monogastric animals such as pigs, poultry, and fish are unable to metabolize phytate. Based on biochemical properties and amino acid sequence alignment, phytases can be categorized into two major classes, the histidine acid phytases and the alkaline phytases. The histidine acid phosphatase class shows broad substrate specificity and hydrolyzes metal-free phytate at the acidic pH range and produces myo-inositol monophosphate as the final product. In contrast, the alkaline phytase class exhibits strict substrate specificity for the calcium-phytate complex and produces myo-inositol trisphosphate as the final product. This review describes recent findings that present novel viewpoints concerning the molecular basis of phytase classification.

Narwal R P, Malik R S, Yadak H K. Micronutrients in soils and plants and their impact on animal and human health
In Singh B R, McLaughlin M J, Brevik E C, eds. Nexus of Soils, Plants and Human Health. Germany: Catena Soil Sciences, 2017. pp 64-71.

[本文引用: 1]

王晓曦, 贾爱霞, 于中利. 不同出粉率小麦粉的品质特性及营养组分研究
中国粮油学报, 2012,27(1):6-9.

[本文引用: 1]

Wang X X, Jia A X, Yu Z L. Study on wheat meal quality characteristic and nutritive composition of different flour yield
J Chin Cereals Oils Assoc, 2012,27(1):6-9 (in Chinese with English abstract).

[本文引用: 1]

高森森, 关二旗, 李萌萌, 卞科. 不同出粉率小麦粉矿物质含量及其加工品质研究
食品工业, 2018,39(4):217-220.

[本文引用: 1]

Gao S S, Guan E Q, Li M M, Bian K. Study on mineral content and processing quality of wheat flour with different flour yields
Food Ind, 2018,39(4):217-220 (in Chinese with English abstract).

[本文引用: 1]

姬飞腾, 李楠, 邓馨. 喀斯特地区植物钙含量特征与高钙适应方式分析
植物生态学报, 2009,33:926-935.

DOI:10.3773/j.issn.1005-264x.2009.05.012URL [本文引用: 1]
喀斯特地区土壤的高钙含量是影响该地区植物生理特征的最重要环境因素之一。高钙影响植物的光合作用、生长速率及磷代谢, 从而限制了许多物种在该地区的分布。选取贵州4个石漠化程度不同的地区, 测定采集地内45种优势种或常见种的地上部分和地下部分的全钙含量以及土壤的交换性钙含量。通过分析喀斯特地区植物与土壤钙含量的特征发现: 喀斯特地区植物具有较高的钙含量平均值; 土壤交换性钙含量对植物地上部分钙含量的影响总体上不显著, 对植物地下部分钙含量的影响显著; 不同类别植物的钙含量存在显著差异, 蕨类植物地上部分钙含量平均值明显低于被子植物; 不同类别植物钙的分布部位也存在显著差异, 在蕨类植物和单子叶植物中地上部分和地下部分的钙含量相近, 而双子叶植物的地上部分钙含量明显高于地下部分。分析了喀斯特地区14种优势灌木和草本植物地上部分与地下部分钙含量的差异性以及与土壤交换性钙含量的相关关系, 以此为根据将14种优势植物对土壤高钙的适应方式分为3种类型: 随遇型、高钙型和低钙型。随遇型植物的钙含量主要受土壤交换性钙含量影响, 其地上部分和地下部分的钙含量均与土壤交换性钙含量成显著正相关关系; 高钙型植物具有较强的钙富集能力, 其地上部分即使在低钙含量的土壤中也可维持较高的钙含量; 低钙型植物的地上部分即使在高钙含量的土壤中亦可维持较低的钙含量。对植物适应钙的不同方式的研究可用于筛选退化生态系统恢复所需的植物资源。
Ji F T, Li N, Deng X. Calcium contents and high calcium adaptation of plants in karst areas of China
Chin J Plant Ecol, 2009,33:926-935 (in Chinese with English abstract).

[本文引用: 1]

Grusak M A, DellaPenna D. Improving the nutrient composition of plants to enhance human nutrition and health
Annu Rev Plant Phys, 1999,50:133-161.

[本文引用: 1]

李鹏, 张兆沛, 郁飞燕, 高晓凯, 张联合. 小麦灌浆期籽粒累积钙的生理特性研究
山东农业科学, 2017,49(8):30-32.

[本文引用: 1]

Li P, Zhang Z P, Yu F Y, Gao X K, Zhang L H. Study on physiological characteristics of calcium accumulation in wheat grains at filling stage
Shandong Agric Sci, 2017,49(8):30-32 (in Chinese with English abstract).

[本文引用: 1]

Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol A B, Fahima T, Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population
Theor Appl Genet, 2009,119:353-369.

DOI:10.1007/s00122-009-1044-zURLPMID:19407982 [本文引用: 7]
Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe.]]>

Shi R L, Tong Y P, Jing R L, Zhang F S, Zou C Q. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.)
J Integr Agric, 2013,12:1512-1521.

DOI:10.1016/S2095-3119(13)60559-6URL [本文引用: 3]

Morris J, Hawthorne K M, Hotze T, Abrams S A, Hirschi K D. Nutritional impact of elevated calcium transport activity in carrots
Proc Natl Acad Sci USA, 2008,105:1431-1435.

URLPMID:18202180 [本文引用: 1]

Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.)
Plant Mol Biol, 2008,66, 429-443.

DOI:10.1007/s11103-007-9281-5URLPMID:18185910 [本文引用: 1]
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.

Nirgude M, Babu B K, Shambhavi Y, Singh U M, Upadhyaya H D, Kumar A. Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.)
Mol Biol Rep, 2014,41:1189-1200.

DOI:10.1007/s11033-013-2825-7URLPMID:24477581 [本文引用: 1]
Finger millet (Eleusine coracana (L.) Gaertn), holds immense agricultural and economic importance for its high nutraceuticals quality. Finger millets seeds are rich source of calcium and its proteins are good source of essential amino acids. In the present study, we developed 36 EST-SSR primers for the opaque2 modifiers and 20 anchored-SSR primers for calcium transporters and calmodulin for analysis of the genetic diversity of 103 finger millet genotypes for grain protein and calcium contents. Out of the 36 opaque2 modifiers primers, 15 were found polymorphic and were used for the diversity analysis. The highest PIC value was observed with the primer FMO2E33 (0.26), while the lowest was observed FMO2E27 (0.023) with an average value of 0.17. The gene diversity was highest for the primer FMO2E33 (0.33), however it was lowest for FMO2E27 (0.024) at average value of 0.29. The percentage polymorphism shown by opaque2 modifiers primers was 68.23 %. The diversity analysis by calcium transporters and calmodulin based anchored SSR loci revealed that the highest PIC was observed with the primer FMCA8 (0.30) and the lowest was observed for FMCA5 (0.023) with an average value of 0.18. The highest gene diversity was observed for primer FMCA8 (0.37), while lowest for FMCA5 (0.024) at an average of 0.21. The opaque2 modifiers specific EST-SSRs could able to differentiate the finger millet genotypes into high, medium and low protein containing genotypes. However, calcium dependent candidate gene based EST-SSRs could broadly differentiate the genotypes based on the calcium content with a few exceptions. A significant negative correlation between calcium and protein content was observed. The present study resulted in identification of highly polymorphic primers (FMO2E30, FMO2E33, FMO2-18 and FMO2-14) based on the parameters such as percentage of polymorphism, PIC values, gene diversity and number of alleles.

Wattoo J I, Liaqat S, Mubeen H, Ashfaq M, Shahid M N, Farooq A, Sajjad M, Arif M. Genetic mapping of grain nutritional profile in rice using basmati derived segregating population revealed by SSRs
Int J Agric Biol, 2019,21:929-935.

[本文引用: 1]

Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot M L. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed
Plant Physiol, 2012,158:352-362.

DOI:10.1104/pp.111.184812URLPMID:22086421 [本文引用: 1]
The ability to alter nutrient partitioning within plants cells is poorly understood. In Arabidopsis (Arabidopsis thaliana), a family of endomembrane cation exchangers (CAXs) transports Ca(2+) and other cations. However, experiments have not focused on how the distribution and partitioning of calcium (Ca) and other elements within seeds are altered by perturbed CAX activity. Here, we investigate Ca distribution and abundance in Arabidopsis seed from cax1 and cax3 loss-of-function lines and lines expressing deregulated CAX1 using synchrotron x-ray fluorescence microscopy. We conducted 7- to 10-mum resolution in vivo x-ray microtomography on dry mature seed and 0.2-mum resolution x-ray microscopy on embryos from lines overexpressing deregulated CAX1 (35S-sCAX1) and cax1cax3 double mutants only. Tomograms showed an increased concentration of Ca in both the seed coat and the embryo in cax1, cax3, and cax1cax3 lines compared with the wild type. High-resolution elemental images of the mutants showed that perturbed CAX activity altered Ca partitioning within cells, reducing Ca partitioning into organelles and/or increasing Ca in the cytosol and abolishing tissue-level Ca gradients. In comparison with traditional volume-averaged metal analysis, which confirmed subtle changes in seed elemental composition, the collection of spatially resolved data at varying resolutions provides insight into the impact of altered CAX activity on seed metal distribution and indicates a cell type-specific function of CAX1 and CAX3 in partitioning Ca into organelles. This work highlights a powerful technology for inferring transport function and quantifying nutrient changes.

Kokane S B, Pathak R K, Singh M, Kumar A. The role of tripartite interaction of calcium sensors and transporters in the accumulation of calcium in finger millet grain
Biol Plant, 2018,62:325-334.

[本文引用: 1]

Tabbita F, Pearce S, Barneix A J. Breeding for increased grain protein and micronutrient content in wheat: ten years of the GPC-B1 gene
J Cereal Sci, 2017,73:183-191.

[本文引用: 1]

Ma Y, Rajkumar M, Zhang C, Freitas F. Beneficial role of bacterial endophytes in heavy metal phytoremediation
J Environ Manage, 2016,174:14-25.

URLPMID:26989941 [本文引用: 1]

Pataco I M, Lidon F C, Ramos I, Oliveira K, Guerra M, Pessoa M F, Carvalho M L, Ramalho J C, Leitao A E, Santos J P, Campos P S, Silva M M, Pais I P, Reboredo F H. Biofortification of durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husnot) grains with nutrients
J Plant Interact, 2017,12(1):39-50.

[本文引用: 1]

相关话题/植物 营养 生物 作物 土壤