关键词:花生; SSR; 整合图谱 An Integrated Genetic Linkage Map from Three F2 Populations of Cultivated Peanut ( Arachis hypogaea L .) GUO Jian-Bin1,2, HUANG Li1, CHENG Liang-Qiang1, CHEN Wei-Gang1, REN Xiao-Ping1, CHEN Yu-Ning1, ZHOU Xiao-Jing1, SHEN Jin-Xiong2, JIANG Hui-Fang1,* 1 Oil Crops Research Institute of China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
2College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, China
Fund:This study was supported by the Natural Science Foundation of China (31271764, 31371662, 31471534, 31461143022), the National Key Basic Research Program of China (973 Program), the Crop Germplasm Resources Protection Project (NB2010-2130135-28B), and the China Agriculture Research System (CARS-14-peanut germplasm resource evaluation) AbstractThe genetic linkage map is important for peanut molecular breeding. Construction of integrating genetic linkage map using multiple populations is an effective approach to increase the marker density of map. Three maps were constructed with three F2 populations, respectively in the present study. Based on anchored SSR markers in the three maps, we constructed a new map with 792 SSR loci and total map distance of 2079.50 cM (the average distance is 2.63 cM). The length of linkage groups varied from 59.10 to 175.80 cM, and the number of markers was from 20 to 66 in the integrated linkages groups. Comparing the intervals of QTLs linked to the pod size and seed size in the three F2 populations with the markers in the integrated linkage groups, all the QTLs linked to the pod size and seed size could be found in the integrated map. Some intervals of QTLs had more markers in the integrated map than in the F2 linkage groups in the present study. The markers in the intervals of QTLs of the integrated map could be used for fine mapping.
表1 3个花生F2群体多态率 Table 1 Percentage of polymorphic primers tested in three populations
群体 Population
组合 Cross
总引物对数 Total SSR markers
新开发引物 New primer
亲本间多态性引物 Polymorphic SSR between parents
多态率 Polymorphic percentage (%)
XZ
徐花13× 中花6号 Xuhua13× Zhonghua 6
2434
960
253
10.39
FI
富川大花生× ICG6375 Fuchuandahuasheng× ICG6375
3227
0
420
13.02
ZI
中花10号× ICGI12625 Zhonghua10× ICGI12625
3371
200
470
13.94
表1 3个花生F2群体多态率 Table 1 Percentage of polymorphic primers tested in three populations
2.2 F2群体的遗传连锁图谱构建 以F2基因型数据为基础, 利用JoinMap 3.0软件进行遗传连锁分析, 构建了3张遗传连锁图。FI群体的连锁图包含22个连锁群(分别命名为LGF1~ LGF22), 347个位点, 图谱总长度为1675.6 cM, 连锁群上标记间平均距离变异范围为2.8~12.0 cM, 总的标记间平均距离为5.7 cM, 不同连锁群上标记数差异较大, 标记数最少的只有6个, 最多的有26个标记。XZ群体的连锁图包含22个连锁群(分别命名为LGX1~LGX22), 228个位点, 图谱总长为1337.7 cM, 标记间平均距离为7.2 cM, 标记数最少的连锁群只有3个标记。ZI群体的图谱包含20个连锁群(分别命名为LGZ1~LGZ20), 470个位点, 图谱总长为1877.3 cM, 标记间平均距离为4.0 cM, 标记分布比较均匀。3张连锁图的基本信息列于表2。 表2 Table 2 表2(Table 2)
表2 三张连锁图的基本信息 Table 2 Basic information of the three genetic linkage maps
表2 三张连锁图的基本信息 Table 2 Basic information of the three genetic linkage maps
洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395-402Hong YB, Liang XQ, Chen XP, Liu HY, Zhou GY, Li SX, Wen SJ. Construction of genetic linkage map in peanut (Arachis hypogaea L. ) cultivars. Acta Agron Sin, 2009, 35: 395-402 (in Chinese with English abstract)[本文引用:2]
[2]
姜慧芳, 陈本银, 任小平, 廖伯寿, 雷永, 傅廷栋, 马朝芝, MaceE, Crouch JH. 利用重组近交系群体检测花生青枯病抗性SSR标记. 中国油料作物学报, 2007, 29: 26-30Jiang HF, Chen BY, Ren XP, Liao BS, LeiY, Fu TD, Ma CZ, MaceE, Crouch JH. Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin J Oil Crop Sci, 2007, 29: 26-30 (in Chinese with English abstract)[本文引用:1]
[3]
彭文舫, 姜慧芳, 任小平, 吕建伟, 赵新燕, 黄莉. 花生AFLP遗传图谱构建及青枯病抗性QTL分析. 华北农学报, 2010, 25: 81-86Peng WF, Jiang HF, Ren XP, Lü JW, Zhao XY, HuangL. Construction of AFLP genetic linkage map and detection of QTLs for bacterial Wilt résistance in peanut (Arachis hypogaea L. ). Acta Agric Boreali Sin, 2010, 25(6): 81-86 (in Chinese with English abstract)[本文引用:1]
[4]
QinH, Fene SP, ChenC, Guo YF, KnappS, CulbreathA, He GH, Wang ML, Zhang XY, Horlbrook CC, Ozias-AkinsP, Guo BZ. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L. ) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653-664[本文引用:2]
[5]
GautamiB, RaviK, Narasu ML, Hoisington DA, Varshney RK. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. , 2009, 7: 100-106[本文引用:1]
[6]
张新友. 栽培花生产量、品质和抗病性的遗传分析与QTL定位研究. 浙江大学博士学位论文, 浙江杭州, 2010Zhang XY. Inheritance of Main Traits Related to Yield, Quality and Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L. ). PhD Dissertation of Zhejiang University, Hangzhou, China, 2010 (in Chinese with English abstract)[本文引用:1]
[7]
Bravo JP, Hoshino AA, Angelici C M L, Lopes C R, Gimenes M A. Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol, 2006, 29: 516-524[本文引用:1]
[8]
CucL, MaceE, CrouchJ, QuangV, LongT, VarshneyR. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L. ). BMC Plant Biol, 2008, 8: 55[本文引用:1]
[9]
GimenesM, HoshinoA, BarbosaA, Palmieri D, Lopes C. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2007, 7: 9[本文引用:1]
[10]
HeG, MengR, NewmanM, GaoG, PittmanR, Prakash CS. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2003, 3: 3[本文引用:1]
[11]
LiangX, ChenX, HongY, LiuH, ZhouG, LiS, GuoB. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L. ) and Arachis wild species. BMC Plant Biol, 2009, 9: 35[本文引用:1]
[12]
VarshneyR, BertioliD, MoretzsohnM, VadezV, KrishnamurthyL, ArunaR, NigamS, MossB, SeethaK, RaviK, The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L. ). Theor Appl Genet, 2009, 118: 729-739[本文引用:1]
[13]
WangH, Penmetsa RV, YuanM, GongL, ZhaoY, GuoB, Farmer AD, Rosen BD, GaoJ, IsobeS, Bertioli DJ, Varshney RK, Cook DR, HeG. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2012, 12: 10[本文引用:1]
[14]
ShirasawaK, KoilkondaP, AokiK, HirakawaH, TabataS, WatanabeM, HasegawaM, KiyoshimaH, SuzukiS, KuwataC. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80[本文引用:1]
[15]
ShirasawaK, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertiol S C M, Thudi M, Pand ey M K, Rami J F, Foncéka D, Gowda M V C, Qin H D. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173-184[本文引用:2]
[16]
SujayV, GowdaM, Pand eyM, BhatR, KhedikarY, NadafH, GautamiB, SarvamangalaC, LingarajuS, RadhakrishanT. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L. ). Mol Breed, 2012, 30: 773-788[本文引用:1]
[17]
Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, DelannayX, Specht JE, Cregan PB. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128[本文引用:1]
[18]
Hong YB, Liang XQ, Chen XP, Lin KY, Zhou GY, Li SX, Liu HY. Genetic differences in peanut cultivated types (Arachis hypogaea L. ) revealed by SSR polymorphism. , 2008, 6: 71-78[本文引用:1]
[19]
张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34: 311-315Zhang XY, Han SY, XuJ, YanM, LiuH, Tang FS, Dong WZ, Huang BY. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L. ). Chin J Oil Crop Sci, 2012, 34: 311-315 (in Chinese with English abstract)[本文引用:1]
[20]
王强, 张新友, 汤丰收, 董文召, 徐静. 基于SRAP分子标记的栽培种花生遗传连锁图谱构建. 中国油料作物学报, 2010, 32: 374-378WangQ, Zhang XY, Tang F S. Dong W Z, XuJ. Construction of genetic linkage map of peanut (Arachis hypogaea L. ) based on SRAP markers. Chin J Oil Crop Sci, 2010, 32: 374-378 (in Chinese with English abstract)[本文引用:1]
[21]
巩鹏涛, 木金贵, 赵金荣, 王晓玲, 白羊年, 方宣钧. 一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合. 分子植物育种, 2006, 4: 309-316Gong PT, Mu JG, Zhao JR, Wang XL, Bai YN, Fang XJ. An integrated soybean genetic linkage map comprising 315 SSRs and 40 AFLPs. Mol Plant Breed, 2006, 4: 309-316 (in Chinese with English abstract)[本文引用:1]
[22]
韩柱强, 高国庆, 韦鹏霄, 唐荣华, 钟瑞春. 利用SSR标记分析栽培种花生多态性及其亲缘关系. , 2003, 32: 295-300Han ZQ, Gao GQ, Wei PX, Tang RH, Zhong RC. Analysis of DNA polymorphism and genetic relationships in cultivated peanut(Arachis hypogaea L. ) using microsatellite markers. , 2003, 32: 295-300 (in Chinese with English abstract)[本文引用:1]
[23]
刘华. 栽培花生产量和品质相关性状遗传分析与QTL定位研究. 河南农业大学硕士学位论文, 河南郑州, 2011LiuH. Inheritance of Main Traits Related to Yield and Quality, and Their QTL Mapping in Peanut (Arachis hypogaea L. ). PhD Disseratation of Henan Agricultural University, Zhengzhou, China, 2011 (in Chinese with English abstract)[本文引用:1]
[24]
李兰周. 利用SSR标记构建花生遗传图谱及农艺性状的QTL分析. 山东农业大学硕士学位论文, 山东泰安2013Li LZ. Construction of Genetic Linkage Map by SSR Markers and QTL Analysis of Agronomic Traits in Peanut (Arachis hypogaea L. ). MS Thesis of Shangdong Agricultural University, Tai’an, China, 2013 (in Chinese with English abstract)[本文引用:1]
[25]
Gimenes MA, Hoshino AA, Barbosa A V G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea L. ). BMC Plant Biol, 2007, 7: 9[本文引用:1]
[26]
Krishna GK, ZhangJ, Pittman BM. Genetic diversity analysis in valencia peanut (Arachis hypogaea L. ) using microsatellite markers. , 2004, 9: 685-697[本文引用:1]
[27]
朱亚娟, 张伯阳, 崔建民, 王晓林. 花生分子遗传图谱构建与QTL定位研究进展. 河南农业科学, 2014, 43(9): 1-5Zhu YJ, Zhang BY, Cui JM, Wang XL. Research advances in molecular genetic map construction and QTL mapping in peanut. Henan Agric Sci, 2014, 43(9): 1-5 (in Chinese with English abstract)[本文引用:1]
[28]
巩鹏涛. 基于SSR标记锚定策略的大豆分子连锁图的整合. 广西农业大学硕士学位论文, 广西南宁, 2006Gong PT. An Integrated Soybean Genetic Linkage Map Based on SSR Anchor Marker Strategies. MS Thesis of Guangxi Agricultural University, Nanning, China, 2006 (in Chinese with English abstract)[本文引用:1]
[29]
李楠. 黄瓜分子遗传图谱构建与整合. 甘肃农业大学硕士学位论文, 甘肃兰州, 2008LiN. Construction and Integration of Molecular Genetic Map in Cucumber. MS Thesis of Gansu Agricultural University, Lanzhou, China, 2008 (in Chinese with English abstract)[本文引用:1]