删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

风偏差对火箭最大气动载荷精度的影响*

本站小编 Free考研考试/2021-12-25

近年来,中国在航天领域取得一系列丰硕成果,运载火箭作为航天技术领域里的核心之一,在发射之前,除需要考虑运载火箭本身是否满足条件外,还需考虑气象环境的影响。例如,运载火箭在高空飞行时,会受到较大的高空风载作用,轻则影响火箭发射的精度,重则导致箭体弯曲折断,造成飞行失败。因此,在火箭设计、研制、发射和飞行阶段,发射场的高空风资料具有非常重要的价值[1-5]
为避免高空风对运载火箭飞行的不利影响,在火箭发射前,需为运载火箭提供发射场未来几天的高空风预报值(简称预报风)。目前,主要利用GRAPES_GFS、欧洲细网格等数值天气预报模式的预报风资料,计算得到未来几天内运载火箭的最大气动载荷(max)预报值。由于数值天气预报模式是在给定初值和边值条件下,通过数值积分计算,求解描写天气演变过程的流体力学和热力学方程组,并对未来做出定量和客观的预报[6],一方面,初始场观测资料的不确定性、背景信息的不确定性及资料同化过程中产生的偏差会造成初值误差[7-8],另一方面,大气本身是一个非常复杂的系统,具有混沌特性[9-11],大气运动的耗散性及大气与不同下垫面之间的多尺度相互作用使模式的物理过程、动力框架和参数化方案对真实大气的描述不可避免地存在偏差,从而造成模式误差。在初值误差和模式误差共同作用下,导致数值天气预报模式的预报能力随预报日数延长而降低[12-16]。荀学义等[15]对内蒙古主要天气系统的预报性能检验时,发现随着预报日数的增加,数值天气预报模式预报能力会下降,特别是60 h以后,预报准确率明显下降。
因此,预报风与实况风(探空气球资料)之间常存在差异,且该差异特征与预报日数紧密相关,导致利用预报风得到运载火箭的最大气动载荷预报值存在误差,且误差值与预报日数有关,实践表明,最大气动载荷预报值误差甚至会超过1 000 Pa·rad。经分析,产生这种误差的原因主要有2个方面:①预报风与实况风之间,相同高度层的纬向风、经向风均存在误差,且误差大小与预报日数有关;②相对于实况风垂直分辨率,预报风的垂直分辨率偏低,可能漏掉大风速区,进一步导致最大气动载荷预报值误差偏大。本文将实况风插值到预报风气压层,研究相同垂直分辨率情况下,预报风产生的风偏差对最大气动载荷预报值精度的影响。通过研究预报风在不同预报日数、不同季节对运载火箭最大气动载荷预报值精度的影响,有利于后期采取有针对性的合理订正,进一步提高运载火箭飞行前的大气环境保障能力。
1 资料和处理方法 1.1 资料 本文所用资料为2017年8月1日—2019年7月31日GRAPES_GFS数值天气预报模式的预报风和探空气球资料的实况风。实况风为每日08:00(北京时间),在高度0~10 km、10~20 km范围内,间隔分别为0.20 km、0.50 km;数值天气预报模式的预报风为:每日08:00起报(北京时间),得到预报日数11天内的预报风,该预报风的水平分辨率为0.25°×0.25°,垂直层数为11层(分别为1 000,950,925,850,700,600,500,400,300,200,100 hPa(1 hPa=100 Pa))。
1.2 处理方法 1) 预报风的水平分辨率为0.25°×0.25°,为与实况风进行直接比较,采用双线性插值方法,将预报风的规则网格点数据插值到实况风资料所在位置。
2) 在垂直方向上,预报风资料为气压层,而实况风资料为高度层,故对预报风与实况风进行比较之前,先确保是相同高度层的气象要素,通过3次样条插值方法将实况风插值到模式气压层。
以实况风及其计算得到的最大气动载荷实况值为基准,通过计算预报风及其最大气动载荷预报值与实况资料之间的偏差、绝对差、相关系数、相对误差和偏差占有率,反映预报风及其最大气动载荷预报值的精度,其相应的计算公式如下:
(1)

(2)

(3)

(4)

式中:D为偏差;A为绝对差;C为相关系数;R为相对误差;n为样本数;x为预报风或最大气动载荷预报值;y为实况风或最大气动载荷实况值;
偏差占有率计算公式定义如下:
(5)

式中:O为偏差占有率;V为选取的阈值;若xi-yi < -V结果成立,则定义xi-yi < -V的值为1,否则值为0;该定义同样适用于-Vxi-yiVxi-yi > V表达式。
反映高空风对运载火箭飞行影响参数的气动载荷()值表达式为:q为动压头,α为总攻角,α′和β′分别为攻角和侧滑角。值反映了高空风对运载火箭飞行作用下产生的气动载荷,关于气动载荷的推导过程,参见文献[1],在此不再赘述。
2 预报风精度 2.1 纬向风预报精度 预报风与实况风之间的纬向风差异特征如图 1所示。在预报日数11天内,纬向风偏差以负值为主(见图 1(a)),且随高度增加呈现增大、减小趋势,高层(300 hPa以上)纬向风偏差明显大于低层,图 1(a)中的纬向风偏差范围为-2.46(第9天200 hPa)~0.22 m/s(第1天850 hPa),平均值为-0.63 m/s;与纬向风偏差变化特征不同(见图 1(a)),纬向风绝对差随高度增加呈现增大、减小变化趋势,随预报日数延长表现为一致增大特征(见图 1(b)),纬向风绝对差范围为1.27(第1天850 hPa)~10.87 m/s(第11天300 hPa),平均值为4.00 m/s;整个高度层内的平均纬向风偏差、绝对差随预报日数变化特征与季节有关(见图 1(c)(d)),在预报日数11天内,春、夏、秋、冬季的纬向风偏差均以负值为主,但它们之间的变化趋势及大小存在较明显差异(见图 1(c)),其偏差值范围分别为-0.94(第9天)~0.21 m/s(第11天)、-1.04(第10天)~-0.27 m/s(第1天)、-1.08(第9天)~-0.18 m/s(第1天)、-1.56 (第6天)~-0.22 m/s(第1天),对应的平均值分别为-0.43 m/s、-0.61 m/s、-0.62 m/s、-0.90 m/s,从小到大依次分别为春季、夏季、秋季、冬季;不同季节纬向风绝对差随预报日数延长呈现线性增大趋势(图 1(d)),其中,春、夏、秋、冬季的纬向风绝对差范围分别为1.63(第1天)~7.04 m/s(第11天)、1.57(第1天)~5.63 m/s(第11天)、1.59(第1天)~6.86 m/s(第11天)、1.61(第1天)~6.91 m/s(第11天),对应的平均值分别为4.33 m/s、3.66 m/s、3.91 m/s、4.12 m/s,从小到大依次分别为夏季、秋季、冬季、春季。
图 1 预报风与实况风之间的纬向风差异随预报日数变化特征 Fig. 1 Zonal wind difference between forecast wind and real wind varies with the number of forecast days
图选项




2.2 经向风预报精度 预报风与实况风之间的经向风差异特征如图 2所示。与纬向风偏差变化特征不同(见图 1(a)),经向风偏差在预报日数第1~7天、第11天内以正值为主,而第8~10天内以负值为主(见图 2(a)),图 2(a)中经向风偏差范围为-0.51(第9天300 hPa)~0.91 m/s(第6天850 hPa),平均值为0.15 m/s;类似纬向风绝对差(见图 1(b)),经向风绝对差同样随预报日数延长而增大,随高度增加呈现增大、减小变化趋势(见图 2(b)),其绝对差值范围为1.42 (第1天850 hPa)~9.34 m/s(第11天300 hPa),平均值为3.87 m/s;在整个高度范围内,经向风偏差、绝对差随预报日数变化特征同样与季节有关(见图 2(c)(d)),与纬向风偏差(图 1(c))不同,春、夏、冬季经向风偏差以正值为主,而秋季以负值为主,春、夏、秋、冬季经向风偏差值范围分别为-0.15 (第8天)~0.52 m/s(第5天)、0.01 (第10天)~0.58 m/s(第3天)、-1.00(第9天)~0.25 m/s(第2天)、-0.12(第2天)~0.56 m/s(第8天),对应的平均值分别为0.30 m/s、0.32 m/s、-0.14 m/s、0.13 m/s,从小到大依次分别为冬季、秋季、春季、夏季;在图 2(d)中,春、夏、秋、冬季经向风绝对差值范围分别为1.65 (第1天)~6.62 m/s(第11天)、1.56(第1天)~5.92 m/s(第11天)、1.64(第1天)~6.30 m/s(第11天)、1.65(第1天)~6.60 m/s(第11天),对应的平均值分别为4.10 m/s、3.75 m/s、3.81 m/s、3.80 m/s,从小到大依次分别为夏季、冬季、秋季、春季。
图 2 预报风与实况风之间的经向风差异随预报日数变化特征 Fig. 2 Meridional wind difference between forecast wind and real wind varies with the number of forecast days
图选项




3 最大气动载荷预报值精度 在2017年8月1日—2019年7月31日,基于预报风、实况风计算得到某型运载火箭的最大气动载荷分别记为maxFmaxR,则在预报日数11天内,maxFmaxR之间的偏差(以maxR为基准)、绝对差、相对误差、相关系数变化特征如图 3所示。max偏差均为负值,且随预报日数延长呈现增大、减小趋势特征(见图 3(a)),其偏差值范围为-135.16(第9天)~-1.96 Pa·rad (第1天),平均值为-75.85 Pa·rad;max绝对差随预报日数延长呈现线性增大趋势特征(见图 3(b)),其值范围为103.48(第1天)~483.73 Pa·rad (第11天),平均值为278.22 Pa·rad;类似max绝对差变化特征,max相对误差随预报日数延长同样表现为线性增大趋势特征(见图 3(c)),其值范围为5.68%(第1天)~26.49%(第11天),平均值为15.43%;max相关系数随预报日数延长呈现减小趋势(见图 3(d)),其值范围为0.63(第11天)~0.91(第2天),平均值为0.82。因此,max预报值精度随预报日数延长而降低。
图 3 maxFmaxR之间的差异随预报日数变化特征 Fig. 3 Difference between maxF and maxR varies with the number of forecast days
图选项




类似预报风,最大气动载荷预报值的偏差、绝对差、相对误差、相关系数随预报日数变化同样与季节有关(见图 4)。从图 4(a)可看出,春季和夏季的max偏差较大、秋季和冬季的max偏差较小,春、夏、秋、冬季的max偏差值范围分别为-199.17(第9天)~-3.37 Pa·rad(第1天)、-115.31(第9天)~-16.60 Pa·rad(第1天)、-146.78(第10天)~1.56 Pa·rad(第1天)、-119.96(第9天)~13.08 Pa·rad(第1天),对应的平均值分别为-90.99 Pa·rad、-87.11 Pa·rad、-63.66 Pa·rad、-59.03 Pa·rad,由小到大依次分别为冬季、秋季、夏季、春季;不同季节的max绝对差随预报日数延长均表现线性增大趋势(见图 4(b)),春、夏、秋、冬季的max绝对差值范围分别为106.86(第1天)~510.28 Pa·rad(第11天)、102.07(第1天)~417.75 Pa·rad(第11天)、90.92(第1天)~475.99 Pa·rad(第11天)、117.59(第1天)~541.92 Pa·rad(第11天),平均值分别为311.31 Pa·rad、259.65 Pa·rad、254.18 Pa·rad、291.32 Pa·rad,由小到大依次分别为秋季、夏季、冬季、春季;类似绝对差,max相对误差随预报日数延长均表现为线性增大趋势(见图 4(c)),其中,春季、夏季的max相对误差在各个预报日数均大于相应的秋季和冬季,春、夏、秋、冬季的max相对误差范围分别为5.82%(第1天)~30.52%(第11天)、7.74%(第1天)~29.57%(第11天)、4.26%(第1天)~23.32%(第11天)、4.84%(第1天)~21.82%(第11天),对应的平均值分别为18.13%、18.89%、12.28%、11.96%,由小到大依次分别为冬季、秋季、春季、夏季;不同季节的max相关系数随预报日数延长的演变特征如图 4(d)所示,可看出,除冬季表现为增大、减小变化趋势外,其他季节均为减小趋势,其中,春、夏、秋、冬季节的max相关系数范围分别为0.49(第11天)~0.94(第1天)、0.64(第11天)~0.96(第1天)、0.60 (第11天)~0.97(第1天)、0.55(第11天)~0.85(第4天),对应的平均值分别为0.76、0.83、0.84、0.74,由小到大依次冬季、春季、夏季、秋季。通过对图 4进行综合判断,不同季节的最大气动载荷预报值精度均随预报日数延长而降低,其中,秋季的最大气动载荷预报值精度最高、夏季和冬季次之,春季最低。
图 4 不同季节maxFmaxR之间的差异随预报日数变化特征 Fig. 4 Difference between maxF and maxR in different seasons varies with the number of forecast days
图选项




在预报日数11天内,max偏差在不同区间内占有率随预报日数变化特征如图 5所示。从该图可看出,max偏差在不同预报日数均存在正值、负值,在相同区间范围,不同预报日数之间的占有率大小存在差异,且不同区间范围在相同预报日数之间的占有率同样存在明显差异,在(-∞,-600]Pa·rad区间,占有率随预报日数延长呈现明显增大趋势(见图 5(a)),值范围为0.31%(第1天)~18.76%(第11天),即第11天为第1天的60.52倍;类似(-∞,-600]Pa·rad区间,占有率在(-600,-400]Pa·rad区间内随预报日数延长呈现增大趋势,但占有率最大值不超过12%(见图 5(b)),其值范围为0.78%(第1天)~11.80%(第8天),即第8天为第1天的15.13倍;与图 5(a)(b)不同,占有率在(-400,-200]Pa·rad区间内随预报日数延长表现为增大、减小趋势(见图 5(c)),且占有率最大值超过20%,其值范围为4.82%(第1天)~20.37%(第6天),即第6天为第1天的4.23倍;与图 5(a)~(c)明显不同,在(-200,0]Pa·rad区间,占有率随预报日数延长呈现明显减小趋势(见图 5(d)),且占有率最大值超过45%,值范围为14.11%(第11天)~45.26%(第1天),第1天为第11天的3.21倍;类似(-200,0]Pa·rad区间,占有率在(0, 200]Pa·rad区间随预报日数延长同样呈现减小趋势,且占有率最大值超过40%(见图 5(e)),其值范围为11.78%(第11天)~41.84%(第1天),第1天为第11天的3.55倍;在(200,400]Pa·rad区间,占有率随预报日数延长的变化较小,且占有率最大值不超过12 %(见图 5(f)),其值范围为6.69%(第1天)~12.71%(第11天),第11天为第1天的1.90倍;占有率在(400,600]Pa·rad区间内随预报日数延长而增大,但占有率最大值不超过10%(见图 5(g)),其值范围为0.31%(第1天)~9.46%(第11天),第11天占有率为第1天的30.52倍;类似(400,600]Pa·rad区间,占有率在(600,+∞)Pa·rad区间内同样随预报日数延长呈现增大趋势,但最大值不超过11 %(见图 5(h)),且第1天的占有率为0,其值范围为0 (第1天)~10.39%(第11天)。在预报日数第1~11天内,max偏差值为负值的占有率分别为51.17%、61.49%、62.52%、59.07%、60.56%、62.68%、60.25%、58.07%、61.18%、60.31%、55.66%,即各个预报日数的max偏差值均以负值为主。
图 5 max偏差在不同区间范围内的占有率随预报日数变化特征 Fig. 5 Variation characteristics of occupancy rate of max deviation in different intervals with the number of forecast days
图选项




4 结论 利用预报风得到的最大气动载荷预报值精度特征,未见相关研究,因此,若以最大气动载荷预报值是否超过阈值作为判断火箭能否发射的依据,会存在一定的决策风险;以2017年8月1日—2019年7月31日某地区实况风为基准,研究预报风产生的风偏差对最大气动载荷预报值精度特征影响,得到主要结论如下:
1) 预报风精度随预报日数延长呈现降低趋势特征,且不同季节的预报风精度存在一定差异。
2) 最大气动载荷预报值精度随预报日数延长而降低;其绝对差由第1天的103.48 Pa·rad增大到第11天的483.73 Pa·rad、相对误差由第1天的5.68%增长到第11天的26.49%。
3) 不同季节的最大气动载荷预报值精度均随预报日数延长而降低,最大气动载荷预报值精度在秋季最高、在夏季和冬季次之,在春季最低;这可能与预报风精度在秋季较高,春季较低有关。
4) max偏差在不同预报日数均存在正值、负值,但以负值为主,这可能与预报风偏差以负值为主有关;在预报日数第1~11天内,max的负偏差占有率范围为51.17%(第1天)~62.68%(第6天)。
通过研究,有利于认清在相同垂直分辨率情况下,预报风产生的风偏差对最大气动载荷预报值精度影响及其随预报日数延长的变化特征,以及最大气动载荷偏差在不同预报日数、不同区间范围内分布特征,从而开展合理的订正,提前为运载火箭飞行提供更加准确的最大气动载荷预报订正值,有利于提高运载火箭飞行的保障能力。后期通过提高预报风的预报精度,减少风偏差,进一步提高最大气动载荷预报精度,是提高运载火箭飞行保障能力的更好方法。

参考文献
[1] 李效明, 许北辰, 陈存芸. 一种运载火箭减载控制工程方法[J]. 上海航天, 2004, 21(6): 7-14.
LI X M, XU B C, CHEN C Y. An engineering method on the control of decreasing load for a launch vehicle[J]. Aerospace Shanghai, 2004, 21(6): 7-14. DOI:10.3969/j.issn.1006-1630.2004.06.002 (in Chinese)
[2] 廖沫, 张平, 陈宗基. 运载火箭载荷主动减缓控制律的设计与仿真[J]. 计算机仿真, 2006, 23(1): 54-58.
LIAO M, ZHANG P, CHEN Z J. Design and simulation of active load-reducing control law of launch vehicle[J]. Computer Integrated Manufacturing Systems, 2006, 23(1): 54-58. DOI:10.3969/j.issn.1006-9348.2006.01.017 (in Chinese)
[3] 宋征宇. 运载火箭飞行减载控制技术[J]. 航天控制, 2013, 31(5): 3-8.
SONG Z Y. Load control technology in launch vehicle[J]. Aerospace Control, 2013, 31(5): 3-8. DOI:10.3969/j.issn.1006-3242.2013.05.001 (in Chinese)
[4] 耿光有, 李东. 由火箭一级飞行弹道分析底部力等动力参数[J]. 导弹与航天运载技术, 2014, 335(5): 10-13.
GENG G Y, LI D. Analysis of dynamic parameters such as base-force for 1st stage of a launch vehicle via the trajectory[J]. Missiles and Space Vehicles, 2014, 335(5): 10-13. (in Chinese)
[5] 杨伟奇, 许志, 唐硕, 等. 基于自抗扰的运载火箭主动减载控制技术[J]. 北京航空航天大学学报, 2016, 42(1): 130-137.
YANG W Q, XU Z, TANG S, et al. Active disturbance rejection control method on load relief system for launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 130-137. (in Chinese)
[6] 周毅, 候志明, 刘宇迪. 数值天气预报基础[M]. 北京: 气象出版社, 2003: 1-23.
ZHOU Y, HOU Z M, LIU Y D. Fundamentals of numerical weather forecast[M]. Beijing: China Meteorological Press, 2003: 1-23. (in Chinese)
[7] HOUTEKAMER P L, LEFAIVRE L, DEROME J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 1996, 124(6): 1225-1242. DOI:10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
[8] 井立红, 高婧, 赵忠, 等. 数值预报模式在新疆塔城地区降水预报中的检验[J]. 干旱气象, 2017, 35(1): 134-141.
JING L H, GAO J, ZHAO Z, et al. Test and comparative analysis on precipitation forecast based on serveral numerical forecast models in Tacheng of Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(1): 134-141. (in Chinese)
[9] LORENZ E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17(3): 321-333. DOI:10.3402/tellusa.v17i3.9076
[10] LORENZ E N. Atmospheric predictability experiments with a large numerical model[J]. Tellus, 1982, 34(6): 505-513. DOI:10.3402/tellusa.v34i6.10836
[11] 陈超君, 王东海, 李国平, 等. 冬季高海拔复杂地形下GRAPES-Meso要素预报的检验评估[J]. 气象, 2012, 38(6): 657-668.
CHEN C J, WANG D H, LI G P, et al. A study of the GRAPES-Meso prediction verification for high altitude and complex terrain during winter time[J]. Meteorological Monthly, 2012, 38(6): 657-668. (in Chinese)
[12] 张宁娜, 黄阁, 吴曼丽, 等. 2010年国内外3种数值预报在东北地区的预报检验[J]. 气象与环境学报, 2012, 28(2): 28-33.
ZHANG N N, HUANG G, WU M L, et al. Contrastive verification of three numerical prediction products in the northeast of China in 2010[J]. Journal of Meteorology and Environment, 2012, 28(2): 28-33. DOI:10.3969/j.issn.1673-503X.2012.02.006 (in Chinese)
[13] 潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验[J]. 气候与环境研究, 2013, 18(1): 111-123.
PAN L J, ZHANG H F, ZHU W J, et al. Forecast performance verification of the ECMWF model over the northeast hemisphere[J]. Climatic and Environmental Research, 2013, 18(1): 111-123. (in Chinese)
[14] 万瑜, 曹兴, 窦新英, 等. ECMWF细网格数值预报产品在乌鲁木齐东南大风预报中的释用[J]. 沙漠与绿洲气象, 2014, 8(1): 32-38.
WAN Y, CAO X, DOU X Y, et al. The application of ECMWF refined net numerical forecast data in the southeast gale in Urumqi[J]. Desert and Oasis Meteorology, 2014, 8(1): 32-38. (in Chinese)
[15] 荀学义, 孟雪峰, 王学强, 等. T639和EC模式对内蒙古主要天气系统的预报性能检验[J]. 气象科技, 2014, 42(5): 832-838.
XUN X Y, MENG X F, WANG X Q, et al. Verification and assessment of forecasting performance of general circulation systems in Inner Mongolia by T639 and EC model products[J]. Meteorological Science and Technology, 2014, 42(5): 832-838. DOI:10.3969/j.issn.1671-6345.2014.05.020 (in Chinese)
[16] 尹姗, 任宏昌. 2017年9-11月T639、ECMWF及日本模式中期预报性能检验[J]. 气象, 2018, 44(2): 326-333.
YIN S, REN H C. Performance verification of medium-range forecasting by T639, ECMWF and Japan models from September to November 2017[J]. Meteorological Monthly, 2018, 44(2): 326-333. (in Chinese)


相关话题/气象 检验 日数 计算 航天

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 无人直升机系留气动载荷CFD计算分析*
    无人直升机停放在地面和舰船甲板等环境中时有可能被风吹动或倾覆,因此在地面或舰船甲板等停放时需要进行系留。在选取系留点和设计系留绳索时需先得到大风条件下无人直升机的系留载荷[1-5]。系留载荷的计算需要考虑无人直升机的自身重力、轮胎与地面的摩擦力、系留绳索的预紧力和直升机受到的气动载荷等。其中,系留气 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进加权响应面的结构可靠度计算方法*
    在现有的结构可靠度分析方法中,一次二阶矩法[1]、二次二阶矩法[2-3]的精度较低,并且在非线性程度较高的情况下还会遇到无法收敛的问题。蒙特卡罗法[4-5]虽然能够得到精确解,但需要大量的抽样和计算时间,限制了其实际应用。响应面法[6]采用多项式函数来近似极限状态函数,原理简单、易于操作且计算效率较 ...
    本站小编 Free考研考试 2021-12-25
  • 载人航天器体装太阳电池阵有效发电面积计算方法*
    传统航天器一般采用太阳电池翼和蓄电池组合电源系统,入轨后太阳电池翼展开,阳照区通过驱动太阳电池翼对日定向为航天器供电、给蓄电池充电,阴影区由蓄电池为航天器供电[1]。航天器发电能力与轨道日照角、飞行姿态、太阳电池翼安装方式、驱动方式等密切相关,发电能力分析是航天器总体设计工作的一项重要内容[2-3] ...
    本站小编 Free考研考试 2021-12-25
  • 基于CGAPIO的航天器编队重构路径规划方法*
    微小航天器具有体积小、质量轻、成本低、灵活性高及研制周期短等显著优点。多个微小航天器编队飞行,可以实现一些复杂的功能,且能够大幅度降低开发成本和风险[1],在对地观测、航天器物联网、海运和天气监测等方面有着广阔应用前景。队形重构是航天器编队飞行任务的重要组成部分,在编队重构进行路径规划时,首先应该考 ...
    本站小编 Free考研考试 2021-12-25
  • 多航天器分布式事件触发分组姿态协同控制*
    姿态协同控制是多航天器系统中的重要技术之一,广泛应用在如航天器编队飞行等领域[1-4]。近年来,研究人员对这一重要问题展开了深入的研究。当系统内所有航天器的姿态和角速度均达到一致时,称多航天器系统达到了姿态协同。现有研究从多个方面对多航天器姿态协同控制问题进行了分析。对于领导-跟随结构的多航天器系统 ...
    本站小编 Free考研考试 2021-12-25
  • 事件触发机制下的充液航天器姿态控制*
    液体燃料以其经济、可靠等优势,在航天运载中得到了广泛的应用[1]。而航天器执行的空间任务周期更长、要求更高,对液体燃料的需求量也就更多。部分充满的液体燃料随着航天器的机动而发生晃动,晃动的液体燃料一方面影响充液航天器的转动惯量,另一方面对系统产生干扰力、力矩,导致航天器任务的执行失败,甚至引发航天事 ...
    本站小编 Free考研考试 2021-12-25
  • 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算*
    在自然界中,大型鸟类通过拉大飞行迎角来实现快速、准确的降落,将这种降落方式称为栖落机动。如果固定翼飞行器可以模仿大型鸟类进行栖落机动,即拉大飞行迎角、快速降低飞行速度并最终栖落在目标区域,那么将极大地扩展其应用场合[1-3]。栖落机动不但能保留固定翼飞行器在续航时间、飞行范围和速度等方面的优势,还能 ...
    本站小编 Free考研考试 2021-12-25
  • 基于非线性干扰观测器的航天器相对姿轨耦合控制*
    随着航天技术的发展,以在轨操作为目的的非合作交会对接技术成为研究的热点。非合作交会对接的远程导引已经历成熟研究,而近距离逼近及抓捕过程因姿轨耦合及大量不确定因素存在的原因,使得工程实施过程中相对测量和相对姿轨耦合控制均存在一定的困难。这些不确定因素主要包括空间环境干扰及非空间环境干扰。其中,空间环境 ...
    本站小编 Free考研考试 2021-12-25
  • 航天器非奇异自适应终端滑模姿轨联合控制*
    随着航天产业的蓬勃发展,对航天器功能需求不断提高,航天器的飞行任务也愈加趋于复杂,编队飞行、交会对接、不规则小行星绕飞等飞行任务,都对控制器的设计提出了挑战。这些复杂的飞行任务中,通常都有着姿态和轨道运动的高度耦合,独立地对两者进行控制较难获得满意的控制效果。面对复杂的控制任务,姿轨耦合的控制方式更 ...
    本站小编 Free考研考试 2021-12-25
  • 基于可视化模型的可重构航天器概念设计方法*
    可重构航天器是模块化即插即用技术与卫星平台技术相结合的新型卫星系统[1]。这种具有标准接口、长期在轨运行的公用平台通过多次发射及在轨组装而形成,能够大大提高在轨系统的灵活性、可扩展性和可维护性[2]。与传统的航天器相比,可重构航天器具有标准化、可重构、面向在轨服务等优势[3],所以在概念设计阶段,工 ...
    本站小编 Free考研考试 2021-12-25