删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高峰时段下离港航空器绿色滑行策略设计与评价*

本站小编 Free考研考试/2021-12-25

近年来,大型枢纽机场航班数量迅速增加,特别是高峰时段,机场容量受限,场面拥堵严重,导致航空器“时走时停”或是在跑道端长时间排队等待,造成大量额外燃油消耗与资源浪费的同时,也产生了大量不必要的污染物排放,极不利于绿色民航的发展。航空运输业产生的排放污染物主要包括碳氢(HC)、一氧化碳(CO)和氮氧化物(NOx)等。过多的污染物排放将导致臭氧层破坏、酸雨等环境问题,部分有毒污染物还将威胁到生态系统和人类的健康发展。因此,为缓解机场拥堵和减少滑行阶段污染物排放,为机场、航空公司提供更加高效、环保的航空器滑行方案,本文针对高峰时段开展了考虑污染物排放的航空器绿色滑行策略研究。相关滑行策略具有较高的经济性,不仅能减少滑行和排队时间,还能减少污染物排放,对发展绿色民航具有积极意义。
为保证航班准点率,航空公司多采用正点推出策略。但随着航班数量的增加,大型枢纽机场在高峰时段易产生拥堵,滑行和排队时间大大增加。为此,****们提出了机位等待策略。Carr基于机场观测数据采用N-control理论,在场面拥挤时,令超出给定控制阈值的航班在停机位等待,当场面拥挤状态下降到阈值以下时,立即给机位等待的航班发出推出指令[1]。Atkin等研究了离港航空器跑道端等待的虚拟队长,分析了在拥堵机场采用机位等待策略的经济效益[2]。Ravizza等提出了一种更贴近实际运行的滑行时间预测方法,采用机位等待策略对欧洲典型枢纽机场瑞士苏黎世机场进行实例仿真,研究结果表明机位等待策略可最多减少约30.3%的总滑行时间,有效减少了滑行阶段的油耗和污染物排放[3]。赵向领等将机位等待策略和虚拟队列相结合,通过构造虚拟队列以控制航班推出率,进而缓解场面拥堵并减少油耗和排放[4]。航空器滑行策略优化也是扩大滑行道系统容量和缓解拥堵的重要途径之一。传统的航空器滑行策略优化模型多以最小总滑行时间、最小延误时间等为优化目标,但少有****考虑环境影响如污染物排放,并对滑行带来的环境影响作定量分析研究。且在研究中,****们多假设航空器滑行速度恒定以简化计算,如假设整个滑行阶段匀速滑行或是直线和转弯段分别以固定值匀速滑行。但若仅考虑匀速滑行会忽视航空器实际运行过程中速度的变化情况,研究结果与实际情况存在较大偏差[5]。因此,近年来,若干****对航空器滑行阶段进行了更加细致的研究,根据速度变化将滑行过程划分为多个阶段,更加贴近航空器滑行的实际情况[6-8]
综合现有研究文献,关于机位等待策略和航空器滑行策略问题的研究,国内外研究成果丰富,但仍有如下问题值得进一步深入:①滑行策略优化中较少考虑污染物排放,关于污染物排放影响的定量分析研究较少;②较少细致考虑滑行速度优化对拥堵缓解和减排的影响,关于将机位等待策略与航空器滑行速度优化问题相结合的研究较少。因而,针对以上不足,开展高峰时段下考虑污染物排放的航空器绿色滑行路径问题研究具有重要的现实意义。航空器的滑行策略优化可分为进港和离港两方面,考虑到相对于进港,离港航空器策略优化对提升场面运行效率、提高航班运行正常性更具有意义,故本文主要研究离港航空器的滑行策略优化问题。
1 滑行策略设计 1.1 滑行成本计算模型 离港航空器的滑行成本主要包含滑行时间成本、油耗成本以及环境成本(污染物排放成本),其中滑行时间成本包含除油耗以外的航空公司成本及因延误而产生的旅客延误成本[9]。除正常滑行阶段外,离港航空器还可能因在机位等待推出或在跑道端停止等待而产生各项成本。因此,综合考虑上述因素,某时段内全部离港航空器的各项成本通用计算模型如下。
滑行时间成本T0的计算模型为
(1)

(2)

(3)

式中:k为离港航班编号;m为航班数目;tktaxi为航班k的滑行时间;tkqueuek的排队时间;tkwaitk的机位等待时间;ck为不考虑燃油和污染物排放成本的航班k的单位时间成本;Tdelay0为旅客延误成本,下文旅客延误成本计算方法相同;skk的座位数;wkk的客座率;rkpk的商务/休闲旅客比例,p=B, L,B表示商务旅客,L表示休闲旅客;vp为商务/休闲旅客的时间价值;tkdelayk的延误时间,根据民航局关于航班正常性管理规定,若机位等待时间超过15min即900s,则延误时间为超出的部分,若机位等待时间不超过15min,则无延误。
因航班机位等待阶段无油耗和排放,所以计算油耗及污染物排放成本时无需考虑机位等待阶段的影响。油耗成本F0的计算模型为
(4)

(5)

(6)

式中:Fktaxik在滑行阶段的油耗;Fkqueuek在排队阶段的油耗;cfuel为燃油价格;fktaxik滑行阶段的燃油流量;fkidlek排队阶段的燃油流量;nkk的发动机台数。
污染物排放成本E0的计算模型为
(7)

式中:Ikntaxi为航班k排放的第n种污染物在滑行阶段的排放指数,本文主要考虑HC、NOx与CO这3种污染物,故n=1, 2, 3;cn为第n种污染物的单位排放成本;Iknidlek排放的第n种污染物在排队等待阶段的排放指数。
1.2 正点推出策略 航空公司多采用正点推出策略以保证离港航班的准点率。但在实际运行中,受空管流控等因素的影响,特别是高峰时段,部分离港航班无法按时起飞,需要在跑道端排队等待,因此其滑行时间成本主要包括滑行和跑道端排队的时间成本。采用传统的滑行速度约束,假设离港航空器在滑行路径的直线段和转弯段上分别匀速滑行,则高峰时段正点推出下基于最小总滑行成本的离港航空器滑行策略为
(8)

(9)

(10)

(11)

(12)

(13)

(14)

式中:ij为网络节点;v为节点个数,V为网络节点的集合;xijke=1为k从节点i滑行至节点j,否则xijke=0;e为第e个滑行阶段;yijk为节点iyijk=0的滑行路径上,否则,yijk=0;tijkek在第e个滑行阶段从点i到点j的时间,滑行阶段分别有直线段和转弯段;fkek在第e个滑行阶段时每台发动机的燃油流量;qijktaxik从点i到点j的污染物排放成本;Inkekn种污染物在第e个滑行阶段的排放指数,n=1, 2, 3;ck为不考虑燃油和排放成本的航班k的单位时间成本。
模型约束条件为
(15)

(16)

(17)

(18)

(19)

式中:ts为安全滑行间隔。
式(15)避免交叉冲突,表示在ij段滑行区间只有一架航空器滑行,两航空器在经过交叉节点j处满足一定的时间间隔;式(16)确保航空器之间保持一定安全距离;式(17)避免超越冲突,即在航空器滑行过程中不会出现一架航空器超越另一架航空器的情形;式(18)确保k开始在停机位滑行时刻不小于预计推出时刻Pk;式(19)确保k在其预计起飞时刻Dk之前结束滑行,抵达起飞跑道入口。
1.3 机位等待策略 机位等待策略是指航班被控制在机位,不撤轮挡且不启动发动机直至航班可以无障碍滑行至跑道端部,从而避免场面滑行等待以缓解拥堵、减少油耗及排放。本文选取离港地面航班数表征场面拥堵程度,即在单位时间内已推出尚未起飞的航班数[10-11],当离港地面航班数超过规定阈值时则需控制推出率,使部分航班在机位等待。
假设m架离港航空器在[0, T]时间内从停机位推出,滑行速度约束同1.2节。将时间间隔[0, T]等分成个t时间片T1, T2, …, Tt。若k预计将在第qk(qk=1, 2, …, t)个时间片内起飞,采用机位等待策略后,k在预计推出时刻无法按时推出,需在停机位等待一定时间后推出,因此k到达跑道端部的时间也被相应地延迟[4],并可能产生地面等待成本和旅客延误成本。因此,高峰时段机位等待下基于最小总滑行成本的离港航空器滑行策略为
(20)

(21)

(22)

(23)

(24)

(25)

(26)

式中:xjk(j=1, 2, …, tk=1, 2, …, m)为航班状态变量;如果k在时间片Tj内抵达跑道端部准备起飞,则xjk=0,否则xjk=1,只有当pkqkxjk才有意义;tjkwaitk在时间片Tj内抵达跑道端部后的机位等待时间;Δt为单个时间片长度;Kj(j=1, 2, …, t)为机场在时间Tj(j=1, 2, …, t)内最大服务航班数。
式(24)~式(26)为约束条件,式(24)为k在预计起飞时间qk不会抵达跑道端部准备起飞;式(25)为k必须在预计到达时间qk或之后一个时间片内抵达跑道端部准备起飞;式(26)为在任意一个时间片Tj内推出的航班数不能超过机场的最大服务航班数。
航班机位等待时无燃油消耗和污染物排放,因此高峰时段内全部离港航班的燃油成本模型和污染物排放成本模型同1.2节类似。
1.4 速度优化策略 速度优化策略是指在机位等待策略的基础上,进一步考虑滑行速度优化以达到缓解拥堵和减少污染物的目的。航空器的滑行速度直接影响滑行时间,且与燃油消耗和污染物排放之间存在关联。当滑行速度较快时,滑行时间较少,但油耗量较大,污染物排放情况与具体机型相关;当滑行速度较慢时,滑行时间较长,但油耗量较小[5]。1.2和1.3节中均假设航空器在直线段和转弯段上分别匀速滑行,而本节则根据航空器的滑行速度变化将航空器的滑行轨迹划分为5个阶段(加速、匀速、减速、停止等待和转弯),图 1给出了滑行过程中速度变化的一个示例。
图 1 离港航空器滑行速度变化示意图 Fig. 1 Schematic diagram of taxiing speed variation of a departure aircraft
图选项




速度优化策略下的离港航空器在滑行路径的单个组成路段上可能会经历加速、匀速和减速等多个阶段,而不是仅仅匀速滑行。离港航空器的滑行时间、燃油、排放均为这5个阶段的数值之和。因此,基于最小总滑行成本的速度优化策略为
(27)

(28)

(29)

(30)

(31)

式中:T3delayT3waitT3queue的计算方法同上;tkesk在单个路段s上第e个阶段所用的时间;fkesk在单个路段s上第e个阶段时的燃油流量;Inkesk在单个路段s上第e个阶段时的排放指数。该模型约束条件与1.3节中相同。
2 滑行策略评价 2.1 算法简介 考虑到遗传算法在求解效率上较常规精确算法有巨大的优势,且****们对遗传算法在滑行相关问题上的应用作了改进和优化[12],因此采用优化后的遗传算法对3个模型进行求解。以速度优化策略仿真为例,具体算法设计思路如下:首先,根据每个离港航班的路径集和该航空器在路径上的3种滑行速度方式(即分别对应最小时间成本、最小燃油成本以及最小污染物排放成本),依次形成了所有离港航班的滑行方案集合。其次,采用实数编码,不同于传统编码将网络节点当作染色体的基因,文中染色体基因表示一个航班所对应的滑行方案编号,染色体则表示高峰时段内所有离港航班的滑行方案选择结果。再次,采用随机初始化产生了多种滑行方案,初始群体中的每一个值代表一个航班所对应的滑行方案编号。之后,形成了以最小总滑行成本为目标的适应度函数。最后,通过选择、交叉、变异、重插入等操作进行迭代生成符合优化目标的染色体。
2.2 数据准备 1) 场面建模及仿真数据
以上海虹桥国际机场为例,以滑行道和跑道的部分飞行区网络图为研究对象,其中包含22个节点和29条边,1条用于起飞离港的跑道,3个集中停机区A1、A2、A3,机场的离港滑行道系统网络如图 2所示。选用2018年1月15日高峰时段8:00—9:00离港航班数据,见表 1
图 2 离港滑行道系统网络示意图 Fig. 2 Schematic diagram of departure taxiway system network
图选项




表 1 离港航班信息汇总 Table 1 Summary of departure flight information
航班号 预计推出时刻 停机区 机型
CSH9217 8:00 3 B738
CHH7604 8:03 2 B738
CSH9515 8:04 3 B738
DKH1119 8:05 1 A320
DKH1005 8:06 1 A320
CSH9331 8:06 3 B763
CSH9213 8:10 3 B738
CSH9301 8:13 3 A333
CES5151 8:14 1 A333
CES511 8:15 1 A333
CSH9395 8:18 3 B738
CSH9239 8:21 3 B738
CSH9463 8:23 3 B738
CES2994 8:25 2 A321
CSN6998 8:26 2 B73G
CSH9513 8:28 3 B738
CCA1590 8:33 1 B747
CSN3596 8:42 2 B77W
CES5103 8:42 1 A333
CES5333 8:44 2 A321
CSH9451 8:47 3 B763
CQH8887 8:48 1 A320
CHH7851 8:49 2 B738
CES5529 8:51 1 A320
CSH815 8:51 3 A333
CSH9131 8:54 3 B738
CES5663 8:55 1 A320
CSH9201 8:58 3 B738


表选项






2) 离港航班参数
为获取机场场面拥堵临界值Nsat和推出率控制阈值Nc,选用虹桥机场2018年1~6月共计66387个离港航班数据进行拟合。以每15 min为时间片,确定离港地面航班数和下一时间片航班起飞量的对应关系(图 3)[10-11]。由图 3可知,单个时间片内离港航班饱和量Nsat取值为5,最大离港航班量Nc取值为7,当航班数量大于7时则需进行推出率控制。
图 3 离港地面航班数和航班起飞量关系 Fig. 3 Relationship between departure ground throughput and number of aircraft taxiing out
图选项




3) 航班滑行成本数据
根据Cherie等的研究成果[13-14]、当期中国航油价格与历年价格指数,可计算获得2018年典型机型的单位滑行时间成本、污染物单位环境外部成本以及旅客单位时间价值,见表 2
表 2 航班滑行成本数据汇总 Table 2 Summary of flight taxiing cost data
成本类型 类别 成本值
单位滑行时间成本/(元·min-1) B73G 131.07
A320 133.76
A321 126.58
B738 135.37
B763 195.12
A333 276.12
B77W 256.71
B747 320.89
单位污染物排放成本/(元·kg-1) HC 50.50
CO 1.12
NOx 113.46
旅客时间价值/(元·min-1) 国内休闲旅客 1.057
国内商务旅客 2.961
国际休闲旅客 1.762
国际商务旅客 4.935


表选项






2.3 仿真结果
2.3.1 缓解拥堵的有效性评价 根据虹桥机场2018年1月15日8:00—9:00离港航班信息,分别统计出4个时间片的航班分布情况,见表 3
表 3 离港航班分布统计结果 Table 3 Statistic result of departure flight distribution
参数 时段
8:00—8:14 8:15—8:29 8:30—8:44 8:44—8:59
该时段内推出的航班数 9 6 5 8
该时段内起飞的航班数 6 7 8 3
该时段内的航班增量 3 -1 -3 5
该时段末的地面航班数 9 8 5 10


表选项






表 3可知,8:00—8:14、8:15—8:29和8:44—8:59这3个时段末的地面航班数均超过最大离港航班量Nc=7,已经产生明显的场面拥堵,可基于推出率控制实施机位等待策略,减少航空器在滑行道或跑道端的拥堵等待时间。表 4给出了航班调整前后的推出时刻。
表 4 基于机位等待策略的航班调整方案 Table 4 Flight adjustment plan based on stand holding strategy
航班号 原推出时刻 新推出时刻
DKH1005 8:06 8:17
CSH9301 8:13 8:26
CSH9463 8:23 8:34
CQH8887 8:48 8:36


表选项






通过仿真计算,可分别获得3种策略下8:00—9:00所有推出航班的仿真结果,见表 5
表 5 3种策略的滑行时间与成本汇总 Table 5 Summary of taxiing time and cost for three strategies
参数 滑行策略
正点推出 机位等待 速度优化
总排队时间/s 1413 842 508
总滑行时间/s 9684 9113 7506
总滑行时间成本/元 27272.24 25663.46 21773.79
总滑行成本/元 34296.68 32348.62 29991.66


表选项






表 5结果可知,相较于正点推出策略,机位等待的总滑行时间和成本分别减少了571s和1948.06元,可见机位等待策略在高峰时段可有效缓解拥堵,降低成本;而相较于机位等待策略,速度优化策略总滑行时间与总排队时间又分别减少了1607s和334s,可见滑行速度优化策略的缓解拥堵更加有效。

2.3.2 减少排放的有效性评价 表 6给出了3种不同策略下所有航班的油耗与排放结果。
表 6 3种策略的燃油与排放结果汇总 Table 6 Summary of fuel and emission result for three strategies
参数 滑行策略
正点推出 机位等待 速度优化
总燃油消耗/kg 1191.91 1138.66 1369.75
总污染物排放/kg 56.41 50.98 47.52
总污染物排放成本/元 1064.89 991.85 1369.11


表选项






表 6数据可得,相较于正点推出策略,机位等待与速度优化策略的总污染物排放分别减少了5.43kg和8.89kg,减排比例达到9.63%和15.76%,可见此2种滑行策略均具有较高的环保性。此外,速度优化策略的总燃油消耗、总排放成本均较高,这是因为该策略下滑行速度快,推力等级高导致燃油流量大、油耗增多。同时考虑到污染物排放因子与推力等级设置的关系,致使NOx排放增多;尽管污染物总量减少了,但因NOx的单位成本远高于其他污染物[7],因而总污染物排放成本增大。
通过上述不同滑行策略的评估与对比,开展高峰时期离港滑行策略设计与路径优化时需特别关注如下2个问题:
1) 正点推出与机位等待的平衡。在高峰时刻,航空器正点推出会增加场面航空器数量、加剧场面拥堵,且增加了滑行时间、燃油消耗及污染物排放,但有效地保证了航班正常性;而机位等待可有效缩短滑行时间、缓解场面拥堵及减少油耗与排放,但较长时间的机位等待又会造成航班延误,影响航班正常性、带来额外的延误成本。因此,需合理确定机位等待时机及时长,实现航班正常与运行成本的最优平衡。
2) 滑行速度与滑行时间的平衡。较快的滑行速度可减少场面滑行时间、提高场面运行效率、缓解场面拥堵;但同时,较快的滑行速度需要较大的推力设置及燃油流量,增加了燃油消耗与污染物排放。因而,需根据机场场面运行状态,合理优化滑行速度,实现拥堵缓解与成本减少的最佳平衡。
3 结论 本文研究了高峰时段离港航空器滑行策略优化问题,提出了正点推出、机位等待及速度优化3种绿色滑行策略,并开展仿真与对比分析。研究结果表明:
1) 机位等待和滑行速度优化策略可减少离港航班总滑行时间以及总滑行成本,具有缓解场面拥堵和降低滑行成本的优势。
2) 速度优化滑行策略可有效减少污染物排放总量从而实现绿色滑行,具有一定的环保性。
3) 滑行策略设计与优化需综合考虑推出时刻、滑行速度、滑行路径等因素。
未来可综合考虑进离港航班及机位等待策略的公平性问题,进一步深入研究高峰时段航空器滑行策略优化问题。

参考文献
[1] CARR F R.Stochastic modeling and control of airport surface traffic[D]. Cambridge: Massachusetts Institute of Technology, 2001.
[2] ATKIN J A, BURKE E K, GREENWOOD J S. A comparison of two methods for reducing take-off delay at London Heathrow airport[J]. Journal of Scheduling, 2011, 14(5): 409-421. DOI:10.1007/s10951-011-0228-y
[3] RAVIZZA S, ATKIN J A D, BURKE E K. A more realistic approach for airport ground movement optimization with stand holding[J]. Journal of Scheduling, 2014, 17(5): 507-520. DOI:10.1007/s10951-013-0323-3
[4] 赵向领, 唐建勋, 卢飞. 航班延迟推出策略及虚拟队列长度灵敏度分析[J]. 四川大学学报(工程科学版), 2016, 48(3): 115-123.
ZHAO X L, TANG J X, LU F. Strategy analysis for delayed fights pushback and sensitivity analysis of the length of virtual queue[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 115-123. (in Chinese)
[5] CHEN J, WEISZER M, STEWART P.Optimal speed profile generation for airport ground movement with consideration of emissions[C]//18th IEEE International Conference on Intelligent Transportation Systems.Piscataway, NJ: IEEE Press, 2015: 1797-1802.
[6] NIKOLERIS T, GUPTA G, KISTLER M. Detailed estimation of fuel consumption and emissions during aircraft taxi operations at Dallas/Fort Worth International Airport[J]. Transport Research Part D:Transport & Environment, 2011, 16(4): 302-308.
[7] EVERTSE C. A low emissions taxi movement planning tool[D]. Delft: Delft University of Technology, 2014.
[8] CHEN J, WEISZER M, STEWART P, et al. Toward a more realistic, cost-effective and greener ground movement through active routing-part Ⅰ:Optimal speed profile generation[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1196-1209. DOI:10.1109/TITS.2015.2477350
[9] 陈琳, 胡荣, 郑丽君, 等. 考虑环境成本的航班滑行等待成本研究[J]. 中国民航大学学报, 2018, 36(2): 28-32.
CHEN L, HU R, ZHENG L J, et al. Study on the cost of flight delays during the taxi-out and waiting period with the consideration of environmental cost[J]. Journal of Civil Aviation University of China, 2018, 36(2): 28-32. DOI:10.3969/j.issn.1674-5590.2018.02.007 (in Chinese)
[10] SIMAIAKIS I, BALAKRISHNAN H, KHADILKAR H, et al. Demonstration of reduced airport congestion through pushback rate control[J]. Transportation Research Part A:Policy and Practice, 2014, 66(1): 251-267.
[11] SIMAIAKIS I, SANDBERG M, BALAKRISHNAN H. Dynamic control of airport departures:Algorithm development and field evaluation[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 285-295.
[12] 孙广义, 刘长有. 基于蜂群算法的飞机滑行路径优化[J]. 航空计算技术, 2016, 46(1): 56-59.
SUN G Y, LIU C Y. Optimization of aircraft taxiing path based on artificial bees colony[J]. Aeronautical Computing Technique, 2016, 46(1): 56-59. DOI:10.3969/j.issn.1671-654X.2016.01.014 (in Chinese)
[13] CHERIE L. The economic benefits and environmental costs of airport operations:Taiwan Taoyuan International Airport[J]. Journal of Air Transport Management, 2011, 17(6): 360-363. DOI:10.1016/j.jairtraman.2011.02.006
[14] 李雄, 刘光才, 颜明池. 航班延误引发的航空公司及旅客经济损失[J]. 系统工程, 2007, 25(12): 20-23.
LI X, LIU G C, YAN M C. The economic loss of airlines and passengers caused by flight delays[J]. Systems Engineering, 2007, 25(12): 20-23. DOI:10.3969/j.issn.1001-4098.2007.12.004 (in Chinese)


相关话题/优化 机场 计算 数据 方案

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于地面基站的定位系统构建和方案*
    随着社会的发展进步及信息化时代的到来,人们的工作、生活等社会活动越来越依赖于位置信息,位置服务逐渐成为大家关注的焦点。目前室外定位导航技术大多依赖于卫星导航系统,经过几十年的发展,到现在已经比较成熟,如今在运载体导航、人员跟踪定位及紧急救助服务等方面发挥着巨大的作用[1],并且实现了广域精准定位,广 ...
    本站小编 Free考研考试 2021-12-25
  • 基于飞行数据的无人机平飞动作质量评价模型*
    随着军用无人机大量装备部队以及民用无人机的广泛应用,专业无人机操控手的需求缺口较大,加强对无人机操控手的基础训练,客观合理的评价操控手的飞行技能水平成为无人机发展应用亟待解决的关键问题[1]。对飞机驾驶人员飞行技能的评价主要有主观法和客观法两种:主观法一般由专家观察飞行过程后对驾驶人员进行打分,如K ...
    本站小编 Free考研考试 2021-12-25
  • 基于深度学习的无人机数据链信噪比估计算法*
    地-空数据链作为无人机系统的重要组成部分,发挥着发送上行遥控指令和回传遥测侦察信息等重要作用[1]。信噪比(Signal-to-NoiseRatio,SNR)是评价无人机通信系统信道环境和通信质量的重要指标,精确的信噪比估计既可以为无人机数据链提供功率控制、信道分配所需要的信息,又可以促使数据链系统 ...
    本站小编 Free考研考试 2021-12-25
  • 附件化超声振动工作台设计及有限元优化分析*
    随着科学技术的进步,高温合金、工程陶瓷、复合材料等具有高硬度、耐磨损、耐高温、耐腐蚀等优异属性的先进材料在航空航天、国防科技、生物工程、计算机工程等尖端领域中的应用日益广泛[1-2]。由于材料的难加工特性,利用传统加工方法已经很难甚至无法提供有效的材料加工技术解决方案[3]。超声振动辅助加工结合了超 ...
    本站小编 Free考研考试 2021-12-25
  • 超磁致伸缩超声换能器的磁路优化设计*
    超声振动板料渐进成形是在普通板料渐进成形的基础上给工具头施加沿某一方向以一定规律周期性变化的超声振动,以改善板料的成形效果。板料渐进成形是一种塑性成形,在塑性成形中施加超声振动可以显著降低材料的流动应力,提高材料的成形极限和产品的加工质量[1]。目前,在超声加工领域,压电陶瓷是超声换能器广泛使用的换 ...
    本站小编 Free考研考试 2021-12-25
  • 桁架拓扑优化几何稳定性判定法和约束方案比较*
    桁架结构拓扑优化是结构优化领域的一个重要分支。结构拓扑优化的很多经典问题都是从桁架结构优化中出现并逐步得到解决的,一些新的结构拓扑优化方法往往也通过求解典型的桁架拓扑优化算例进行可行性和有效性的验证。优化过程中桁架拓扑会发生变更,这是拓扑优化不同于尺寸优化的一个显著特点。虽然也有****研究进化类的 ...
    本站小编 Free考研考试 2021-12-25
  • 一种低轨遥感卫星按需数据传输机制*
    分布式低轨(LowEarthOrbit,LEO)卫星网络广泛应用于遥感遥测、气象预报与环境监测等领域[1],凭借其覆盖域广、灵活部署、传播时延低等优势,成为全球数据实时采集与传输的最佳选择。由于地面站部署受限,高速飞行的LEO卫星运行至境内地面站通信范围时才能迎来短暂的数据传输窗口,并且卫星与地面站 ...
    本站小编 Free考研考试 2021-12-25
  • 多源数据融合的民航发动机修后性能预测*
    民航发动机属高价值复杂装备,通过维修活动难以将其性能恢复至全新状态。为了在保证发动机修后性能的同时控制其维修成本,需要根据发动机送修性能状态、使用时间、维修工作范围等多源异构数据预测发动机的修后性能,从而支持维修方案的优化。目前,国内外关于航空发动机维修决策支持方面的研究大体可归结为可靠性分析[1- ...
    本站小编 Free考研考试 2021-12-25
  • 三维点阵结构等效热分析与优化方法*
    三维点阵结构,亦被称为“类桁架结构”[1],因具有轻质、高比刚度、高比强度的机械性能和主动散热/阻热、减震、吸能等功能特性,在航空、航天等领域受到广泛的关注。而三维点阵结构在研制与应用过程中,涉及到的关键问题包括制造工艺与性能分析方法等,对此,国内外****展开了一系列的研究。由于传统工艺的限制,点 ...
    本站小编 Free考研考试 2021-12-25
  • 高速开关阀的复合PWM控制策略分析与优化*
    电液伺服阀凭借其高频响、高精度等优势在航空航天、机器人及精密驱动等领域得到了广泛的应用[1]。但由于受到自身结构特性的约束,且对油液清洁度要求较高,电液伺服阀在高温、高压及强振动的环境下极易产生零漂或卡死等问题[2],长期工作可靠性难以保证。高速开关阀(High-SpeedOn/OffValve,H ...
    本站小编 Free考研考试 2021-12-25