删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

压电悬臂梁振动能量收集仿真与试验验证*

本站小编 Free考研考试/2021-12-25

能量收集是把周围环境存在的能量(包括热能、风能、声能、水能、太阳能、电磁波、光、机械振动能和人类活动能等)的一种或者多种收集起来转换成电能,然后直接给电子器件供电或者存储在电容器或可充电电池等储能器件中[1]。能量收集应用广泛,可用于结构健康监测的分布式传感器节点、医疗嵌入式或植入式传感器节点,为大型系统的电池充电,为汽车轮胎压力监测系统供电,为无人飞行器供电以及为家用安全系统供电等[2]。机械振动能是环境中普遍存在的一种能量形式,收集振动能量一般有3种方式:电磁感应[3]、静电产生[4]和压电材料[5-6]。在这3种方式中,基于压电材料的能量收集装置研究最为广泛。随着压电材料性能的快速提升,基于压电原理的电源有望得到较高的能量密度,且该技术容易通过MEMS技术集成化。此外压电式装置结构简单、无电磁干扰、清洁环保,在信息技术、智能器件、生物医学等方面得到了广泛的应用[7]
国内外****对压电振动能量收集系统的机电耦合模型、能量收集电路设计、压电片尺寸等多方面进行了研究。Erturk和Inman[8]给出了压电单晶片与双晶片悬臂梁的分布参数模型及其在简谐基座激励下的封闭解。Badel等[9]开发了一种新型功率流优化方法,用于提高转化能量,相比于标准技术,此方法使得收集的电能提高了900%。Stewart等[10]研究指出,当压电片的长度占悬臂梁有效长度的2/3时,压电片的输出功率最大。
在压电能量收集方面,现有的研究多偏于理论模型[11-13]研究,也有少部分试验方面的验证[14]。这些研究多数针对带有集中质量块的悬臂梁和基座运动激励,而实际的机翼等振动结构不附加额外质量,且外激励不作用在基座,而是重力或气动力等非基座激励。本文结合压电材料的力电耦合理论和结构动力学理论,推导了基于压电陶瓷的悬臂梁能量收集装置的机电耦合方程,选取一阶模态进行分析,采用状态空间法进行时域求解,设计了试验装置,对理论建模进行了验证,对压电材料的发电能力进行了正确预测。
1 压电悬臂梁机电耦合建模 针对典型机翼结构,考虑悬臂梁根部固支,在根部附近上表面粘贴有压电片,悬臂梁稍部施加正弦激励力。为研究方便,采用经典的欧拉梁模型为研究对象。在压电铝梁(见图 1)上取长度为dx的微元(见图 2)进行分析。
图 1 粘贴有压电片的欧拉梁示意图 Fig. 1 Schematic diagram of Euler beam with piezoelectric patch
图选项




图 2 dx长度的悬臂梁微元受力分析 Fig. 2 Force analysis of a dx-length cantilever element
图选项




图 2中:M为弯矩;F为力;θ为转角。对于该问题,边界条件为一端固支,自由端作用有集中力P(t)。基于欧拉伯努利梁理论假设,忽略重力影响,由振动理论[15]得微元段的力学平衡方程为
(1)

式中:ρ*(x)为压电梁的线密度;(x-L)表示在x=L处作用有集中力Pw(x, t)为梁的横向弯曲变形。
化简式(1) 得
(2)

力矩平衡方程为
(3)

略去二阶小量得
(4)

将式(4) 代入式(2) 得到压电悬臂梁振动微分方程为
(5)

式中:
(6)

其中:ρbbbhb分别为压电悬臂梁基体的密度、宽度和高度;ρpbphp分别为压电片的密度、宽度和高度;xp为压电片纵向位置;Lp为压电片的长度;h(x)为Heaviside函数,函数详细表达式见式(7);h(x-xp)-h(x-xp-Lp)表示压电片分布在xpxxp+Lp的范围内。
(7)

引入e型压电方程[16]
(8)

式中:TDES分别为应力矢量、电位移矢量、电场强度矢量和应变矢量;cE为恒电场条件下测得的弹性常数矩阵;εs为恒应变下测得的介电常数矩阵;e为压电弹性介质的压电应力常数矩阵。
由于31型压电薄片极化方向为3方向,所以E1=E2=0,同时压电片只受1方向的应力,故压电片的压电方程可简化为
(9)

式中:T1p表示压电片上的应力。
(10)

式中:D3为3方向的电位移。
压电悬臂梁的弯矩M可以表示为
(11)

式中:T1b为压电悬臂梁基体的应力,其表达式为
(12)

其中:Yb为悬臂梁基体的弹性模量。
把式(9) 代入式(11) 有
(13)

式中:Mp(x)为逆压电效应产生的弯矩;YI(x)为悬臂梁的弯曲刚度。
(14)

(15)

假设场强在压电片极化方向(3方向)均匀分布,则
(16)

式中:V为电压。
把式(16) 代入式(15) 中有
(17)

把式(13) 代入式(5) 中有
(18)

梁的横向位移可以表示为
(19)

式中:Φi(x)为第i阶固有振型;ui(t)为第i阶振动模态响应。
根据模态振型的正交性质,每阶模态梁的振动方程可以表示为
(20)

式中:MiKi分别为第i阶模态质量和模态刚度;Fpi(t)为压电片通过逆压电效应产生的作用在机械结构上的模态力;Fai(t)为外部激励模态力。
(21)

(22)

(23)

(24)

式中:ω为悬臂梁固有振动频率;为力电耦合系数,其表达式为
(25)

将式(23)、式(24) 代入式(20) 中可得
(26)

对式(10) 沿长度方向积分得
(27)

(28)

式中:Cp为压电片的电容;Q为由压电效应产生的电荷量。两边对时间求导可得
(29)

由欧姆定律可知
(30)

故式(29) 可变为
(31)

2 数值仿真 第1节推导了压电悬臂梁的机电耦合方程(见式(26) 和式(31)),本节将介绍如何求解该耦合方程。在求解之前先对方程进行简化,考虑到外激励频率一般比较低,因此结构在振动时一阶模态占主导。在研究时只取结构的第一阶模态,即w(x, t)=Φ(x)u(t),这样就将N维问题变为二维问题(见式(32))。
(32)

采用MSC.Nastran有限元软件进行模态分析。模态振型关于质量归一化,即M=1, K=ω2。并考虑实际结构阻尼,式(32) 可变为
(33)

式中:ζ为阻尼比。写为状态空间方程的形式:
(34)

式中:(L)=fsin(pt)为稍部正弦变化的激振力的广义力形式。利用式(34) 可以在MATLAB中仿真得到正弦激励力下的压电片两端产生电压大小V
压电悬臂梁结构的相关参数如表 1所示。
表 1 压电悬臂梁和压电片的几何参数及材料性能参数 Table 1 Geometry and material performance parameters of piezoelectric cantilever and piezoelectric patch
参数数值
铝制悬臂梁压电片(PZT-5)
长/mm53360
宽/mm3030
高/mm50.5
弹性模量/GPa7261
泊松比0.30.35
密度/(kg·m-3)2 7007 500
压电常数e31*/ (C·m-2)-11.27
电容/nF139


表选项






2.1 输出电压随外激励频率变化规律 采用MSC.Nastran软件建立压电片和铝制悬臂梁的有限元模型,通过模态分析计算得到压电悬臂梁结构的一阶频率为15.985 Hz。在仿真分析时,阻尼比取0.03,正弦激励频率范围为10~20 Hz。外接电阻值取1 MΩ,输出电压曲线如图 3所示。可以看出,当外激励频率与压电悬臂梁固有振动频率接近时(15.4 Hz),输出电压达到峰值72.265 4 V。
图 3 给定外接负载下的输出电压-外激励频率曲线 Fig. 3 Output voltage versus excitation frequency curve with given load
图选项




2.2 输出电压随外接负载变化规律 2.1节分析了输出电压随外激励频率变化的规律,当激励频率为15.4 Hz时,输出电压达到峰值。本节将给出给定外激励频率下,输出电压随外接负载变化的规律仿真结果。外激励频率取15.4 Hz,外接电阻值范围为100~107 Ω,仿真曲线如图 4所示。可以看出,当外接电阻值达到1 MΩ左右时,输出电压达到最大值。
图 4 给定外激励频率下的输出电压-外接负载曲线 Fig. 4 Output voltage versus load curve withgiven excitation frequency
图选项




3 试验验证 试验装置示意图如图 5所示。图中:xf为激振力距根部距离。建立了如图 6所示的试验装置实物图。在梁的根部贴有一片压电片,压电片的极化方向沿梁的厚度方向,在端部用激振器产生正弦激振力。外接可调负载的电阻箱。使用Labview编写采集界面,采用NI数据采集系统采集负载电压、翼尖加速度和激振力。
图 5 试验装置示意图 Fig. 5 Schematic diagram of test equipment
图选项




图 6 试验装置 Fig. 6 Test equipment
图选项




本文分别进行了固定外接负载下不同外激励频率的输出电压试验和固定外激励频率下不同外接负载的输出电压试验,分别对第2节的仿真结果进行验证。
3.1 试验输出电压随外激励频率变化规律 试验时,把变阻箱的阻值调到1 MΩ,之后一直保持不变。改变激振力信号的外激励频率,即可测得不同外激励频率下的输出电压信号,由于NI数据采集系统的电压限制(最大电压为10 V),试验时必须控制输入的激振力幅值,图 7图 8给出了外激励频率为15.4 Hz时的激振力-时间曲线和输出电压-时间曲线。为了便于试验结果分析,在进行试验数据处理时,将输出电压关于激振力的幅值归一化。试验结果如图 9所示。可以看出,当外激励频率为15.4 Hz时,单位激振力幅值的输出电压幅值约为73.69 V,与理论分析结果吻合很好。
图 7 激振力-时间曲线 Fig. 7 Excitation force versus time curve
图选项




图 8 输出电压-时间曲线 Fig. 8 Output voltage versus time curve
图选项




图 9 给定外接负载下的输出电压-外激励频率曲线(试验) Fig. 9 Output voltage versus excitation frequency curve with given load (test)
图选项




3.2 试验输出电压随外接负载变化规律 固定激振力的外激励频率为15.4 Hz,改变外接负载的阻值,即可得到不同负载下的输出电压值。试验时,外接负载的取值范围为100~107 Ω,试验结果如图 10所示。可以看出,当外接负载值为1 MΩ时,输出电压达到峰值。
图 10 给定外激励频率下的输出电压-外接负载曲线(试验) Fig. 10 Output voltage versus load curve withgiven excitation frequency (test)
图选项




4 试验结果对比及分析 图 11图 12给出了仿真结果和试验结果的对比曲线。可以看出,仿真结果和试验结果吻合的非常好,误差小于5%。当外激励频率与压电悬臂梁一阶弯曲频率接近时,能量收集装置的电压达到峰值73 V/N。当外接负载达到1 MΩ以后,能量收集装置的电压达到峰值,且不再发生变化。
图 11 给定外接负载下输出电压-外激励频率仿真试验结果对比 Fig. 11 Simulation and test comparison of output voltage versus excitation frequency curve with given load
图选项




图 12 给定外激励频率下输出电压-外接负载仿真试验结果对比 Fig. 12 Simulation and test comparison of output voltage versus load curve with given excitation frequency
图选项




5 结论 1) 输出电压-外激励频率、输出电压-外接负载仿真结果曲线与试验结果曲线吻合很好,仿真结果与试验结果的误差小于5%,说明压电悬臂梁的双向耦合分布参数的机电耦合模型能较为准确地反映其实际能量收集特性,为后续能量收集工作奠定了基础。
2) 激振器的附加质量和刚度会对系统的固有频率有影响,理论建模中未加以考虑,从而造成仿真结果与试验结果的误差。
3) 当外激励频率与压电悬臂梁一阶弯曲频率接近时,能量收集装置的电压达到峰值73 V/N。当外接负载达到1 MΩ以后,能量收集装置的电压达到峰值,且不再发生变化。

参考文献
[1] 王青萍. 基于压电臂梁的振动能量收集器的研究[D]. 武汉: 华中科技大学, 2010: 2-5.
WANG Q P.Research on vibration energy harvester based on piezoelectric cantilever[D].Wuhan:Huazhong University of Science and Technology, 2010:2-5(in Chinese).
[2] PRIYA S, INMAN D J. 能量收集技术[M]. 黄见球, 黄庆安, 译. 南京: 东南大学出版社, 2012: 1-100.
PRIYA S, INMAN D J.Energy harvesting technologies[M].HUANG J Q, HUANG Q A, translated.Nanjing:Southeast University Press, 2012:1-100(in Chinese).
[3] ARNOLD D. Review of microscale magnetic power generation[J].IEEE Transactions on Magnetics, 2007, 43(11): 3940–3951.DOI:10.1109/TMAG.2007.906150
[4] MITCHESON P, MIAO P, START B, et al. MEMS electrostatic micro-power generator for low frequency operation[J].Sensors and Actuators A, 2004, 115(2-3): 523–529.DOI:10.1016/j.sna.2004.04.026
[5] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials[J].Smart Materials and Structures, 2007, 16(3): R1–R21.DOI:10.1088/0964-1726/16/3/R01
[6] JEON Y B, SOOD R, JEONG J H, et al. MEMS power generator with transverse mode thin film PZT[J].Sensors and ActuatorsA, 2005, 122(1): 16–22.DOI:10.1016/j.sna.2004.12.032
[7] UCHINO K. Piezoelectric actuators 2006[J].Journal of Electroceramics, 2008, 20(3-4): 301–311.DOI:10.1007/s10832-007-9196-1
[8] ERTURK A, INMAN D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters[J].Journal of Vibration and Acoustics, 2008, 130(4): 41002.DOI:10.1115/1.2890402
[9] BADEL A, GUYOMAR D, LEFEUVRE E, et al. Piezoelectric energy harvesting using a synchronized switch technique[J].Journal of Intelligent Material Systems and Structures, 2006, 17(8-9): 831–839.DOI:10.1177/1045389X06057533
[10] STEWART M, WEAVER P M, CAIN M. Charge redistribution in piezoelectric energy harvesters[J].Applied Physics Letters, 2012, 100(7): 073901.DOI:10.1063/1.3685701
[11] 赵新强. 基于颤振机理的微型压电风致振动能量收集器基础理论与关键技术[D]. 重庆: 重庆大学, 2013: 10-20.
ZHAO X Q.Basic theory and key technologies of micro piezoelectric wind-induced-vibration energy harvester based on flutter[D].Chongqing:Chongqing University, 2013:10-20(in Chinese).
[12] WANG Y, INMAN D J. Experimental validation of a multifunctional wing spar design with sensing, harvesting and gust alleviation capabilities[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1289–1299.DOI:10.1109/TMECH.2013.2255063
[13] WU Y N, LI D C, XIANG J W. Performance analysis and parametric design of an airfoil-based piezoaeroelastic energy harvester[J].European Journal of Lipid Science & Technology, 2014, 116(9): 1114–1128.
[14] ANTON S R, ERTURK A, INMAN D J. Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage[J].Journal of Aircraft, 2012, 49(1): 292–301.DOI:10.2514/1.C031542
[15] 方同, 薛璞. 振动理论及应用[M].西安: 西北工业大学出版社, 1998: 200-240.
FANG T, XUE P. Vibrancy theory and applications[M].Xi'an: Northwestern Polytechnical University Press, 1998: 200-240.(in Chinese)
[16] 王矜奉, 苏文斌, 王春明, 等. 压电振动理论及应用[M].北京: 科学出版社, 2011: 10-80.
WANG J F, SU W B, WANG C M, et al. Theory and application of piezoelectric vibration[M].Beijing: Science Press, 2011: 10-80.(in Chinese)


相关话题/电压 结构 材料 系统 质量

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 锂电池相变材料/风冷综合热管理系统温升特性*
    锂电池作为动力电池具有比能量高、比功率大、使用寿命长、工作范围宽、环境友好等特点[1],越来越广泛应用于手机、便携式电脑、电动汽车(BEV)、混合型电动汽车(HEV)、轨道交通、航空航天等领域,对锂离子动力电池的应用研究也越来越多。锂电池在广泛应用的同时,其安全性问题逐渐暴露出来。锂离子电池引发的安 ...
    本站小编 Free考研考试 2021-12-25
  • 航空铝合金材料腐蚀裂纹扩展性能试验*
    腐蚀是飞机金属结构不可避免的影响因素,例如,在潮湿、盐雾、海水等腐蚀性强烈的自然环境中服役的飞机,其金属结构常常受到腐蚀环境与疲劳载荷的共同作用导致疲劳裂纹提前萌生并加速扩展,从而削弱飞机结构的承载能力,对飞机飞行安全构成严重威胁[1-3]。为此,针对腐蚀对航空金属材料裂纹扩展性能的影响开展了大量研 ...
    本站小编 Free考研考试 2021-12-25
  • 非完美特性下的多状态系统检测与维修优化*
    系统维修在工业工程领域扮演着重要角色,维修优化问题一直是国内外研究的热点。通过优化维修策略可以降低系统运行成本,获得更好的经济性,提高系统的可靠性。传统可靠性以及系统维修优化研究主要面向二状态系统[1-3],即假定系统部件只有完美工作和彻底故障2种状态。然而在实际中,许多系统在工作和故障2种状态之间 ...
    本站小编 Free考研考试 2021-12-25
  • 激光多普勒测速系统自适应阈值检测算法*
    激光多普勒测速(LDV)系统是根据多普勒效应通过测量运动体的多普勒频移获得目标的精确速度,它具有动态响应快、空间分辨率高、测量范围广等优点,广泛应用于车载导航、航空航天等领域[1-2]。由于LDV回波信号中可能不包含多普勒信号,或者信号淹没在噪声中,为了能检测到多普勒信号,通常采用设定门限的方法[3 ...
    本站小编 Free考研考试 2021-12-25
  • 卫星天线复合材料框架的铺层优化设计*
    复合材料有着较高的比强度与比刚度,并且通过改变复合材料的铺层数、铺层顺序以及每层的铺层角度,可使其满足结构的不同设计要求。复合材料的这些优点正是卫星天线所需要的,因此,在卫星天线框架设计中复合材料有着广泛的应用。为了避免在卫星发射过程中可能发生的共振,要求卫星天线框架拥有较高的基频,并在满足基本力学 ...
    本站小编 Free考研考试 2021-12-25
  • 复杂产品系统模块化分解模型及应用研究*
    模块化思想在产品制造中的最早应用可以追溯到20世纪初,并于20世纪20年代首次应用于机械产品设计[1]。欧美专家于20世纪50年代开始正式提出了模块化设计的概念,并把这一概念提升到理论高度开展研究[2]。在复杂产品系统(CoPS)领域,模块化处理是指从CoPS出发,研究其构成形式,依据一定的模块设计 ...
    本站小编 Free考研考试 2021-12-25
  • 基于ADS-B的航空器测高系统误差评估方法*
    2007年11月,中国民航在8400~12500m的高空航路实施了缩小垂直间隔(ReducedVerticalSeparationMinimum,RVSM)标准,将高空航路的垂直间隔从600m缩小到300m。RVSM的实施有效增加了中国民航高空航路容量,也对航空器的高度保持性能提出了更加苛刻的要求。 ...
    本站小编 Free考研考试 2021-12-25
  • 载荷不确定的周期性结构稳健拓扑优化*
    由于制造装配简单、易于模块化、成本低等优点,周期性结构在结构设计中受到了越来越多的关注[1],因此研究其优化设计方法具有重要的理论和工程意义。文献[2-3]分别应用双向渐进结构优化(BESO)法和密度法研究了周期性结构拓扑优化方法并获得了较好的结果。文献[4-5]对周期性结构拓扑优化方法进行了分析讨 ...
    本站小编 Free考研考试 2021-12-25
  • 航空铝合金系列材料裂纹扩展性能的温度效应*
    民用航空器的运行环境非常复杂,其结构需要经受较大范围的温度变化,例如,万米高空飞行时航空结构常处于-50℃左右的低温环境,高速飞行以及发动机的发热会使结构局部处于高温状态,温度的变化对结构材料的裂纹扩展性能有显著的影响。为此,针对温度对航空金属材料裂纹扩展性能的影响开展了大量研究,James等[1] ...
    本站小编 Free考研考试 2021-12-25
  • SiCp/Al复合材料增强体分布均匀性超声成像方法*
    近年来,SiCp/Al复合材料以其优异的物理性能和机械性能,如:低密度、高比强度、高比刚度、低热膨胀系数和高导热系数等[1-2],在航空航天领域逐渐得到广泛应用,已作为结构材料应用于航空航天结构件、直升机旋翼连接件、飞机腹鳍、导流叶片和支撑结构件等[3-4]。因其物理、机械性能与飞行器性能和安全可靠 ...
    本站小编 Free考研考试 2021-12-25