邓冠铁1,,,
黄华平3
1.北京师范大学数学科学学院,数学与复杂系统教育部重点实验室, 100875,北京
2.江西师范大学数学与统计学院, 330022,江西南昌
3.重庆三峡学院数学与统计学院, 404020,重庆万州
基金项目:国家自然科学基金资助项目(11271045,11561031)
详细信息
通讯作者:邓冠铁(1959-),男,博士,教授. 研究方向:复分析. E-mail:denggt@bnu.edu.cn
中图分类号:O174.52计量
文章访问数:134
HTML全文浏览量:70
PDF下载量:34
被引次数:0
出版历程
收稿日期:2020-08-21
网络出版日期:2021-07-06
刊出日期:2021-06-30
Growth and fixed points of solutions for second-order linear differential equations in the unit disc
Yu CHEN1, 2,Guantie DENG1,,,
Huaping HUANG3
1. School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems of Ministry of Education, Beijing Normal University, 100875, Beijing, China
2. School of Mathematics and Statistics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, China
3. School of Mathematics and Statistics, Chongqing Three Gorges University, 404020, Wanzhou, Chongqing, China
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:利用系数特征函数比较的极限形式,研究了单位圆内二阶微分方程解的增长性,给出了系数均为可允许的解析函数时方程所有非零解为无穷级的充分条件,并得到了解的不动点估计的一般性结论.所得结果推广了Heittokangas与曹廷彬的结果.
关键词:线性微分方程/
单位圆/
可允许的/
特征函数/
不动点
Abstract:Growth of solutions for second-order differential equations in the unit disc is investigated through some limit form with a comparison of coefficients’ characteristic functions.Some sufficient conditions are given for every non-zero solution to be of infinite order when coefficients of the equations are admissible.Moreover, a general conclusion is drawn on the fixed points in the solutions.The above results extend upon those of Heittokangas and Cao Tingbin.
Key words:linear differential equation/
unit disc/
admissible/
characteristic functions/
fixed points