doi:10.12202/j.0476-0301.2019249邓冠铁,
王薇薇,北京师范大学数学科学学院,北京师范大学数学与复杂系统教育部重点实验室,100875,北京
基金项目:国家自然科学基金资助项目(11971042)
详细信息 中图分类号:O174.56
计量
文章访问数:99
HTML全文浏览量:80
PDF下载量:19
被引次数:0
出版历程
收稿日期:2019-09-16
网络出版日期:2020-07-22
刊出日期:2020-10-31
The integration of functions in the weighted Hardy spaces
Guantie DENG,
Weiwei WANG,School of Mathematical Sciences, Beijing Normal University; Laboratory of mathematics and Complex Systems of Ministry of Education, Beijing Normal University, 100875, Beijing, China
摘要 HTML全文 图(0)表(0)参考文献(8)相关文章施引文献资源附件(0)访问统计 摘要 摘要:主要对管状区域上加权Hardy空间
${H^{(s)}(\psi\text{,}\!\!\!\!\Gamma)}$中的解析函数进行了刻画. 证明了
${F(z)\in H^{(s)}(\psi\text{,}\!\!\!\!\Gamma)(2s \text{>} n)}$,当且仅当
${F(z)}$可以表示为一个支集在
${\overline{U(\psi\text{,}\!\!\!\!\Gamma)}}$上的
${L_{s'}^2(\mathbb{R}^n)}$中函数的Fourier-Laplace变换. 借助于Paley-Wiener定理,给出了当
${s=1}$时,
${H^{(1)}(\psi\text{,}\!\!\!\!\Gamma)}$空间中解析函数
${F(z)}$与其1阶偏导数
${\partial{F(z)}/\partial z_k(k=1\text{,}\!\!\!\!2\text{,}\!\!\!\!\cdot\cdot\cdot\text{,}\!\!\!\!n)}$的频谱函数之间的等式关系.
关键词:解析函数/
管状区域/
加权Hardy空间/
Fourier-Laplace变换Abstract:Analytic functions in Hardy space
$H^{(s)}(\psi\text{, }\!\!\!\!\Gamma)$ on tube domains are described. We prove that
$F(z)\in H^{(s)}(\psi\text{, }\!\!\!\!\Gamma)(2s \text{>} n)$ if and only if
$F(z)$ can be expressed as Fourier-Laplace transform of a function belonging to
$L_{s'}^2(\mathbb{R}^n)$ and is supported in set
$\overline{U(\psi\text{, }\!\!\!\!\Gamma)}$. With
$s=1$, relationships between spectral functions of
$F(z)$ in
$H^{(1)}(\psi\text{, }\!\!\!\!\Gamma)$ and its partial derivatives of one order
$\partial F(z)/\partial z_k$ for
$k\; {\rm{equals}}\;{\rm{to}}\;1\text{, }\!\!\!\!2\text{, }\!\!\!\!\cdot\cdot\cdot\text{, }\!\!\!\!n$.
Key words:analytic functions/
tube domains/
weighted Hardy space/
Fourier-Laplace transform