删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

递推关系式与二元欧拉多项式的乘积

本站小编 Free考研考试/2021-12-27

递推关系式与二元欧拉多项式的乘积 付梅1, 胡浩栋21. 上海财经大学数学科学学院 上海 200433;
2. 上海财经大学信息管理与工程学院交叉科学研究院 上海 200433 A Recurrence Relation and the Product of Two Bivariate Eulerian Polynomials Mei FU1, Hao Dong HU21. School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China;
2. Research Institute for Interdisciplinary Sciences, Department of Computer Science, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(353 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要对满足某类递推关系式的数列,我们用完全齐次对称函数表示了它的生成函数,并结合该生成函数与上下文无关文法,给出了两重二元欧拉多项式乘积一个简洁的展开式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-08-18
MR (2010):O157.1
基金资助:国家自然科学基金资助项目(11831002,71771141)
作者简介: 付梅,E-mail:fu.mei@sufe.edu.cn;胡浩栋,E-mail:hu.haodong@sufe.edu.cn
引用本文:
付梅, 胡浩栋. 递推关系式与二元欧拉多项式的乘积[J]. 数学学报, 2021, 64(6): 1037-1042. Mei FU, Hao Dong HU. A Recurrence Relation and the Product of Two Bivariate Eulerian Polynomials. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 1037-1042.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/1037


[1] Carlitz L., Product of two Eulerian polynomials, Math. Mag., 1963, 36(1):37-41.
[2] Chen W. Y. C., Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci., 1993, 117(1-2):113-129.
[3] Chen W. Y. C., Fu A. M., Context-free grammars for permutations and increasing trees, Adv. in Appl. Math., 2017, 82:8-82.
[4] Dumont D., William chen grammars and derivations in trees and arborescences, Sém. Lothar. Combin., 1996, 37:B37a, 21 pp.
[5] Kim D. S., Kim T., Lee S. H., et al., Some identities for the product of two bernoulli and euler polynomials, Adv. in Difference Equations, 2012, 2012:95 pp.
[6] Ma S. M., Ma J., Yeh Y. N., γ-positivity and partial γ-positivity of descent-type polynomials, J. Combinatorial Theory, Ser. A, 2019, 167:257-293.
[7] Pan H., Sun Z. W., New identities involving bernoulli and euler polynomials, J. Combinatorial Theory, Ser. A, 2006, 113:156-175.

[1]曾云波. 与A_l相联系的半单Toda方程的Lax对和Bcklund变换[J]. Acta Mathematica Sinica, English Series, 1992, 35(4): 454-459.
[2]马世骅. 万能的ω-上下文无关文法及它的一个应用[J]. Acta Mathematica Sinica, English Series, 1989, 32(1): 134-140.
[3]程艺. 离散形式的规范变换、贝克隆变换与非线性叠加公式[J]. Acta Mathematica Sinica, English Series, 1988, 31(1): 67-71.
[4]郭本瑜. 带有热传导的波动方程组的两类差分格式[J]. Acta Mathematica Sinica, English Series, 1978, 21(3): 270-272.
[5]唐稚松. LR(K)的语法分解与FPL程序的优化[J]. Acta Mathematica Sinica, English Series, 1978, 21(1): 44-65.
[6]李大潜;李立康. 梁振动固有频率的计算[J]. Acta Mathematica Sinica, English Series, 1974, 17(2): 89-99.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23882
相关话题/文法 上海财经大学 数学 上海 工程学院