删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

经典高斯和及它们的一些递推性质

本站小编 Free考研考试/2021-12-27

经典高斯和及它们的一些递推性质 徐小玲1, 张佳凡21. 延安大学西安创新学院 西安 710100;
2. 西北大学数学学院 西安 710127 A Certain Classical Gauss Sums and Some of Their Recursive Properties Xiao Ling XU1, Jia Fan ZHANG21. School of Data Science and Engineering, Xi'an Innovation College of Yan'an University, Xi'an 710100, P. R. China;
2. School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(359 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用解析方法及经典高斯和的性质研究了某些特殊对称高斯和的计算问题,并给出了一些新的恒等式及其二阶线性递推公式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-08
MR (2010):O156.4
基金资助:国家自然科学基金项目(11771351);陕西省教育厅2019年度专项科学研究计划(19JK0978)
作者简介: 徐小玲,E-mail:yadxxxl@163.com;张佳凡,E-mail:zhangjiafan@stumail.nwu.edu.cn
引用本文:
徐小玲, 张佳凡. 经典高斯和及它们的一些递推性质[J]. 数学学报, 2021, 64(3): 479-484. Xiao Ling XU, Jia Fan ZHANG. A Certain Classical Gauss Sums and Some of Their Recursive Properties. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 479-484.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/479


[1] Apostol Tom M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Bai H., Hu J. Y., On the classical Gauss sum and the recursive properties, Advances in Difference Equations, 2018, 2018:387.
[3] Berndt B. C., Evans R. J., Sums of Gauss, Jacobi, and Jacobsthal, Journal of Number Theory, 1979, 11:349-389.
[4] Berndt B. C., Evans R. J., The determination of Gauss sums, Bulletin of the American Mathematical Society, 1981, 5:107-128.
[5] Chen L., On the classical Gauss sums and their some properties, Symmetry, 2018, 10:625.
[6] Chen L., Hu J. Y., A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums, Acta Mathematica Sinica, Chinese Series, 2018, 61:67-72.
[7] Chen Z. Y., Zhang W. P., On the fourth-order linear recurrence formula related to classical Gauss sums, Open Mathematics, 2017, 15:1251-1255.
[8] Chowla S., Cowles J., Cowles M., On the number of zeros of diagonal cubic forms, Journal of Number Theory, 1977, 9:502-506.
[9] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
[10] Kim T., Dolgy D. V., Kim D. S., Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials, Advanced Studies in Contemporary Mathematics, 2018, 28:321-336.
[11] Kim T., Kim D. S., Dolgy D. V., et al., Sums of finite products of Chebyshev polynomials of the third and fourth kinds, Advances in Difference Equations, 2018, 2018:283.
[12] Kim T., Kim D. S., Dolgy D. V., et al., Representation by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first, third and fourth kinds, Advances in Difference Equations, 2019, 2019:110.
[13] Kim T., Kim D. S., Jang L. C., et al., Representing by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials, Advances in Difference Equations, 2019, 2019:162.
[14] Pan C. D., Pan C. B., Goldbach Conjecture (in Chinese), Science Press, Beijing, 1992.
[15] Ren G. L., He D. D., Zhang T. P., On general partial Gaussian sums, J. Inequal. Appl., 2016, 2016:295.
[16] Shen S. M., Zhang W. P., On the quartic Gauss sums and their recurrence property, Advances in Difference Equations, 2017, 2017:43.
[17] Wang T. T., Chen G. H., A note on the classical Gauss sums, Mathematics, 2018, 6:313.
[18] Zhang W. P., Hu J. Y., The number of solutions of the diagonal cubic congruence equation mod p, Mathematical Reports, 2018, 20:73-80.

[1]刘华宁, 李柯瑶. 基于有限域中的二次特征生成的伪随机二进制格点[J]. 数学学报, 2021, 64(1): 145-150.
[2]祁兰, 陈卓钰. 多项式的特征和与二项指数和的混合均值[J]. 数学学报, 2020, 63(4): 397-402.
[3]刘馨予, 陈卓钰. 一类四项指数和的四次均值[J]. 数学学报, 2020, 63(3): 261-270.
[4]张佳凡, 吕星星. 多项式的特征和及其L-函数[J]. 数学学报, 2019, 62(6): 903-912.
[5]陈曼. 带有多个Dirichlet特征和加法特征的Menon-Sury恒等式[J]. 数学学报, 2019, 62(6): 949-958.
[6]李彬, 朱世辉. 具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性[J]. 数学学报, 2019, 62(5): 745-764.
[7]王婷婷, 关雅靓. 一个与Dedekind和相关的新和式及其在特殊点的值[J]. 数学学报, 2019, 62(3): 497-502.
[8]林清春. 离散型p次Dirichlet型第一特征值[J]. 数学学报, 2018, 61(6): 951-962.
[9]王晓瑛, 曹艳梅. 短区间的并集中整数及其m次幂的差的均值分布[J]. 数学学报, 2018, 61(6): 943-950.
[10]冀永强, 张文鹏. 指数和与特征和的混合均值[J]. 数学学报, 2018, 61(5): 777-782.
[11]杜先存, 李小雪. 广义四次Gauss和的四次均值[J]. 数学学报, 2018, 61(4): 541-548.
[12]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[13]张宏波, 史定华. M/T-SPH/1排队平稳指标分布的尾部衰减特征[J]. 数学学报, 2017, 60(5): 713-720.
[14]侯松波. 典型几何上Ricci流下的特征值[J]. 数学学报, 2017, 60(4): 583-594.
[15]许贵桥. 单形积上的Sobolev类逼近问题的易处理性[J]. 数学学报, 2017, 60(4): 605-618.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23765
相关话题/数学 指标 学报 延安大学 数学学院