摘要利用积分几何中估计包含测度的思想给出常曲率平面上一些新的逆Bonnesen型不等式.这些不等式在欧氏平面上为著名的Bottema不等式的改进形式与新的逆Bonnesen型不等式. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2017-05-26 | | 基金资助:重庆市基础研究与前沿探索项目(cstc2016jcyjA0465);中央高校基本科研业务费专项资金资助项目(XDJK2020C053)
| 通讯作者:畅敏E-mail: lucy911cm@163.com | 作者简介: 徐文学,E-mail:xwxjk@163.com |
[1] Banchoff T. F., Pohl W. F., A generalization of the isoperimetric inequality, J. Differential Geom., 1971, 6:175-213. [2] Bokowski J., Heil E., Integral representation of quermassintegrals and Bonnesen-style inequalities, Arch. Math., 1986, 47:79-89. [3] Bonnesen T., Les Probléms des Isopérimétres et des Isépiphanes, Paris, 1929. [4] Bottema O., Eine obere Grenze für das isoperimetrische Defizit ebener Kurven, Nederl. Akad. Wetensch. Proc., 1933, A66:442-446. [5] Burago Yu. D., Zalgaller V. A., Geometric Inequalities, Springer-Verlag, Berlin, Heidelberg, 1988. [6] Chern S. S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. Math., 1944, 45(4):747-752. [7] Diskant V., A generalization of Bonnesen's inequalities, Soviet Math. Dokl., 1973, 14:1728-1731. [8] Enomoto K., A generalization of the isoperimetric inequality on S2 and flat tori in S3, Proc. Amer. Math. Soc., 1994, 120(2):553-558. [9] Escudero C., Reventós A., Solanes G., Focal sets in two-dimensional space forms, Pac. J. Math., 2007, 233(2):309-320. [10] Gao X., A new reverse isoperimetric inequality and its stability, Math. Ineq. Appl., 2012, 15(3):733-743. [11] Gao X., A note on the reverse isoperimetric inequality, Results Math., 2011, 59:83-90. [12] Grinberg E., Ren D., Zhou J., The symmetric isoperimetric deficit and the containment problem in a plane of constant curvature, preprint. [13] Grinberg E., Li S., Zhang G., et al., Integral Geometry and Convexity, Proc. Inte. Conf., World Scientific, 2006. [14] Howard R., Blaschke's rolling theorem for manifolds with boundary, Manuscripta Math., 1999, 99:471-483. [15] Hsiung C. C., Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. Math., 1961, 73(2):213-220. [16] Klain D., Bonnesen-type inequalities for surfaces of constant curvature, Adv. Appl. Math., 2007, 39(2):143-154. [17] Klain D., An error estimate for the isoperimetric deficit, Illinois J. Math., 2005, 49(3):981-992. [18] Klain D., Rota G., Introduction to geometric probability, Lezioni Lincee. Cambridge University Press, Cambridge, 1997. [19] Ku H., Ku M., Zhang X., Isoperimetric inequalities on surfaces of constant curvature, Canadian J. Math., 1997, 49:1162-1187. [20] Li M., Zhou J., An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature, Sci. China Math., 2010, 53(8):1941-1946. [21] Osserman R., The isoperimetric inequality, Bull. Amer. Math. Soc., 1978, 84:1182-1238. [22] Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86:1-29. [23] Pan S., Zhang H., A reverse isoperimetric inequality for closed strictly convex plane curves, Beiträge zur Algebra und Geometrie, 2007, 48(1):303-308. [24] Pan S., Tang X., Wang X., A refined reverse isoperimetric inequality in the plane, Math. Ineq. Appl., 2010, 13(2):329-338. [25] Pleijel A., On konvexa kurvor, Nordisk Math. Tidskr., 1955, 3:57-64. [26] Ren D., Topics in Integral Geometry, World Scientific, Singapore, 1994. [27] Santaló L. A., Integral Geometry and Geometric Probability, Reading, MA:Addison-Wesley, 1976. [28] Santaló L. A., Integral geometry on surfaces of constant negative curvature, Duke Math. J., 1943, 10:687-704. [29] Santaló L. A., Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, Duke Math. J., 1942, 9:707-722. [30] Tang D., Discrete Wirtinger and isoperimetric type inequalities, Bull. Austral. Math. Soc., 1991, 43:467-474. [31] Teufel E., A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math., 1991, 57(5):508-513. [32] Teufel E., Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math., 1992, 22:622-630. [33] Wei S., Zhu M., Sharp isoperimetric inequalities and sphere theorems, Pac. J. Math., 2005, 220(1):183-195. [34] Weiner J. L., A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J., 1974, 24:243-248. [35] Xia Y., Xu W., Zhou J., et al., The reverse Bonnesen style inequalities in a surface Xκ2 of constant curvature, Sci. China Math., 2013, 56(6):1145-1154. [36] Xu W., Zhou J., Zhu B., On Bonnesen-type inequalities for a surface of constant curvature, Proc. Amer. Math. Soc., 2015, 143(11):4925-4935. [37] Zeng C., Ma L., Zhou J., et al., The Bonnesen isoperimetric inequality in a surface of constant curvature, Sci. China Math., 2012, 55(9):1913-1919. [38] Zeng C., Zhou J., Yue S., The symmetric mixed isoperimetric inequality of two planar convex domains, Acta Math. Sinica, Chinese Series, 2012, 55(2):355-362. [39] Zhang G., Zhou J., Containment measures in integral geometry, In:Integral Geometry and Convexity, World Scientific, Singapore, 2006:153-168. [40] Zhang X. M., Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc., 1998, 126(2):461-470. [41] Zhou J., On Bonnesen-type inequalities, Acta Math. Sinica, Chinese Series, 2007, 50(6):1397-1402. [42] Zhou J., Chen F., The Bonneesen-type inequality in a plane of constant cuvature, J. Korean Math. Soc., 2007, 44(6):1363-1372. [43] Zhou J., Ma L., Xu W., On the isoperimetric deficit upper limit, Bull. Korean Math. Soc., 2013, 50(1):175-184. [44] Zhou J., Ren D., Geometric inequalities from the viewpoint of integral geometry, Acta Math. Sci. Ser. A, 2010, 30A(5):1322-1339. [45] Zhou J., Xia Y., Zeng C., Some new Bonnesen-style inequalities, J. Korean Math. Soc., 2011, 48(2):421-430.
|
[1] | 曾春娜, 周家足, 岳双珊. 两平面凸域的对称混合等周不等式[J]. Acta Mathematica Sinica, English Series, 2012, (2): 355-362. | [2] | 高红亚;刘海红;周树清;. 弱(K_1,K_2(x))-拟正则映射的高阶可积性[J]. Acta Mathematica Sinica, English Series, 2009, (05): 17-22. | [3] | 周家足;. 平面Bonnesen型不等式[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1397-140. | [4] | 陆志勤;陈志华. Riemann 曲面上第一特征值的估计[J]. Acta Mathematica Sinica, English Series, 1992, 35(5): 623-631. | [5] | 陆志勤. 球面凸区域第一特征值的估计[J]. Acta Mathematica Sinica, English Series, 1991, 34(5): 588-598. | [6] | 张高勇. 积分几何不等式[J]. Acta Mathematica Sinica, English Series, 1991, 34(1): 72-90. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23612
一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27何承香1,曾波1,杨乐彬21.重庆工商大学管理科学与工程学院,重庆400067;2.重庆市科学技术研究院,重庆401123出版日期:2021-10-25发布日期:2021-12-24PredictionandComparativeAnalysisof${mPM}_{2.5}$inChongqin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27王秋萍,郭佳丽,王晓峰西安理工大学理学院,西安710054出版日期:2021-05-25发布日期:2021-08-11AChaoticMothFlameOptimizationAlgorithmBasedonDimensionLearningandQuadraticInterpolationWANG ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27蔡川,程铭,苏伟,李辉,徐月霞兰州大学信息科学与工程学院,兰州730000出版日期:2016-11-25发布日期:2017-01-18LINEARINPUTMETHODSFORMATHEMATICALFORMULACAIChuan,CHENGMing,SUWei,LIHui,XUYuexiaScho ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27孟志青1,沈瑞1,党创寅2,蒋敏31.浙江工业大学经贸管理学院,杭州310023;2.香港城市大学系统工程与工程管理系,香港;3.浙江工业大学经贸管理学院,杭州310023出版日期:2016-01-25发布日期:2016-03-02ABARRIEROBJECTIVEPENALTYFUNCTIONAL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27出版日期:2020-08-15发布日期:2020-08-15IntroductiontoFengKangOnline:2020-08-15Published:2020-08-15摘要图/表参考文献相关文章编辑推荐Metrics本文评论分享此文:()Norelatedarticlesfound!阅读次 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27董彬北京大学北京国际数学研究中心,北京,100871收稿日期:2019-09-29出版日期:2019-12-15发布日期:2019-11-16作者简介:董彬,北京大学北京国际数学研究中心长聘副教授、主任助理,北京大数据研究院深度学习实验室研究员、生物医学影像分析实验室副主任.2003年本科毕业于北京 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27张辉北京师范大学数学科学学院,数学与复杂系统教育部重点实验室,北京100875收稿日期:2017-02-16出版日期:2018-03-15发布日期:2018-02-03基金资助:国家自然科学基金(11471046,11571045)和教育部中心高校基础研究基金.MATHEMATICALPROBLEM ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27孙家昶,张娅中国科学院软件研究所并行软件与计算科学实验室,北京100190收稿日期:2017-03-15出版日期:2017-08-15发布日期:2017-08-04基金资助:国家重点研发计划高性能计算重点专项(2016YFB0200601)、国家自然科学基金(91530323,91230109)、国 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27中文关键词:生物脱氮N2O排放数学模型英文关键词:Bologicalnitrogenremoval,Nitrousoxideemission,Mathematicalmodel基金项目:国家自然科学基金项目(51508073)作者单位E-mail郭静波东北电力大学建筑工程学院吉林市guojingbo ... 中科院化学研究所 本站小编 Free考研考试 2021-12-27
|