删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

常曲率平面上的逆Bonnesen型不等式

本站小编 Free考研考试/2021-12-27

常曲率平面上的逆Bonnesen型不等式 徐文学, 畅敏西南大学数学与统计学院 重庆 400715 Reverse Bonnesen-type Inequalities for a Surface of Constant Curvature Wen Xue XU, Min CHANGSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(480 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用积分几何中估计包含测度的思想给出常曲率平面上一些新的逆Bonnesen型不等式.这些不等式在欧氏平面上为著名的Bottema不等式的改进形式与新的逆Bonnesen型不等式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-05-26
MR (2010):O186.5
基金资助:重庆市基础研究与前沿探索项目(cstc2016jcyjA0465);中央高校基本科研业务费专项资金资助项目(XDJK2020C053)
通讯作者:畅敏E-mail: lucy911cm@163.com
作者简介: 徐文学,E-mail:xwxjk@163.com
引用本文:
徐文学, 畅敏. 常曲率平面上的逆Bonnesen型不等式[J]. 数学学报, 2020, 63(4): 309-318. Wen Xue XU, Min CHANG. Reverse Bonnesen-type Inequalities for a Surface of Constant Curvature. Acta Mathematica Sinica, Chinese Series, 2020, 63(4): 309-318.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I4/309


[1] Banchoff T. F., Pohl W. F., A generalization of the isoperimetric inequality, J. Differential Geom., 1971, 6:175-213.
[2] Bokowski J., Heil E., Integral representation of quermassintegrals and Bonnesen-style inequalities, Arch. Math., 1986, 47:79-89.
[3] Bonnesen T., Les Probléms des Isopérimétres et des Isépiphanes, Paris, 1929.
[4] Bottema O., Eine obere Grenze für das isoperimetrische Defizit ebener Kurven, Nederl. Akad. Wetensch. Proc., 1933, A66:442-446.
[5] Burago Yu. D., Zalgaller V. A., Geometric Inequalities, Springer-Verlag, Berlin, Heidelberg, 1988.
[6] Chern S. S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. Math., 1944, 45(4):747-752.
[7] Diskant V., A generalization of Bonnesen's inequalities, Soviet Math. Dokl., 1973, 14:1728-1731.
[8] Enomoto K., A generalization of the isoperimetric inequality on S2 and flat tori in S3, Proc. Amer. Math. Soc., 1994, 120(2):553-558.
[9] Escudero C., Reventós A., Solanes G., Focal sets in two-dimensional space forms, Pac. J. Math., 2007, 233(2):309-320.
[10] Gao X., A new reverse isoperimetric inequality and its stability, Math. Ineq. Appl., 2012, 15(3):733-743.
[11] Gao X., A note on the reverse isoperimetric inequality, Results Math., 2011, 59:83-90.
[12] Grinberg E., Ren D., Zhou J., The symmetric isoperimetric deficit and the containment problem in a plane of constant curvature, preprint.
[13] Grinberg E., Li S., Zhang G., et al., Integral Geometry and Convexity, Proc. Inte. Conf., World Scientific, 2006.
[14] Howard R., Blaschke's rolling theorem for manifolds with boundary, Manuscripta Math., 1999, 99:471-483.
[15] Hsiung C. C., Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. Math., 1961, 73(2):213-220.
[16] Klain D., Bonnesen-type inequalities for surfaces of constant curvature, Adv. Appl. Math., 2007, 39(2):143-154.
[17] Klain D., An error estimate for the isoperimetric deficit, Illinois J. Math., 2005, 49(3):981-992.
[18] Klain D., Rota G., Introduction to geometric probability, Lezioni Lincee. Cambridge University Press, Cambridge, 1997.
[19] Ku H., Ku M., Zhang X., Isoperimetric inequalities on surfaces of constant curvature, Canadian J. Math., 1997, 49:1162-1187.
[20] Li M., Zhou J., An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature, Sci. China Math., 2010, 53(8):1941-1946.
[21] Osserman R., The isoperimetric inequality, Bull. Amer. Math. Soc., 1978, 84:1182-1238.
[22] Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86:1-29.
[23] Pan S., Zhang H., A reverse isoperimetric inequality for closed strictly convex plane curves, Beiträge zur Algebra und Geometrie, 2007, 48(1):303-308.
[24] Pan S., Tang X., Wang X., A refined reverse isoperimetric inequality in the plane, Math. Ineq. Appl., 2010, 13(2):329-338.
[25] Pleijel A., On konvexa kurvor, Nordisk Math. Tidskr., 1955, 3:57-64.
[26] Ren D., Topics in Integral Geometry, World Scientific, Singapore, 1994.
[27] Santaló L. A., Integral Geometry and Geometric Probability, Reading, MA:Addison-Wesley, 1976.
[28] Santaló L. A., Integral geometry on surfaces of constant negative curvature, Duke Math. J., 1943, 10:687-704.
[29] Santaló L. A., Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, Duke Math. J., 1942, 9:707-722.
[30] Tang D., Discrete Wirtinger and isoperimetric type inequalities, Bull. Austral. Math. Soc., 1991, 43:467-474.
[31] Teufel E., A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math., 1991, 57(5):508-513.
[32] Teufel E., Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math., 1992, 22:622-630.
[33] Wei S., Zhu M., Sharp isoperimetric inequalities and sphere theorems, Pac. J. Math., 2005, 220(1):183-195.
[34] Weiner J. L., A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J., 1974, 24:243-248.
[35] Xia Y., Xu W., Zhou J., et al., The reverse Bonnesen style inequalities in a surface Xκ2 of constant curvature, Sci. China Math., 2013, 56(6):1145-1154.
[36] Xu W., Zhou J., Zhu B., On Bonnesen-type inequalities for a surface of constant curvature, Proc. Amer. Math. Soc., 2015, 143(11):4925-4935.
[37] Zeng C., Ma L., Zhou J., et al., The Bonnesen isoperimetric inequality in a surface of constant curvature, Sci. China Math., 2012, 55(9):1913-1919.
[38] Zeng C., Zhou J., Yue S., The symmetric mixed isoperimetric inequality of two planar convex domains, Acta Math. Sinica, Chinese Series, 2012, 55(2):355-362.
[39] Zhang G., Zhou J., Containment measures in integral geometry, In:Integral Geometry and Convexity, World Scientific, Singapore, 2006:153-168.
[40] Zhang X. M., Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc., 1998, 126(2):461-470.
[41] Zhou J., On Bonnesen-type inequalities, Acta Math. Sinica, Chinese Series, 2007, 50(6):1397-1402.
[42] Zhou J., Chen F., The Bonneesen-type inequality in a plane of constant cuvature, J. Korean Math. Soc., 2007, 44(6):1363-1372.
[43] Zhou J., Ma L., Xu W., On the isoperimetric deficit upper limit, Bull. Korean Math. Soc., 2013, 50(1):175-184.
[44] Zhou J., Ren D., Geometric inequalities from the viewpoint of integral geometry, Acta Math. Sci. Ser. A, 2010, 30A(5):1322-1339.
[45] Zhou J., Xia Y., Zeng C., Some new Bonnesen-style inequalities, J. Korean Math. Soc., 2011, 48(2):421-430.

[1]曾春娜, 周家足, 岳双珊. 两平面凸域的对称混合等周不等式[J]. Acta Mathematica Sinica, English Series, 2012, (2): 355-362.
[2]高红亚;刘海红;周树清;. 弱(K_1,K_2(x))-拟正则映射的高阶可积性[J]. Acta Mathematica Sinica, English Series, 2009, (05): 17-22.
[3]周家足;. 平面Bonnesen型不等式[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1397-140.
[4]陆志勤;陈志华. Riemann 曲面上第一特征值的估计[J]. Acta Mathematica Sinica, English Series, 1992, 35(5): 623-631.
[5]陆志勤. 球面凸区域第一特征值的估计[J]. Acta Mathematica Sinica, English Series, 1991, 34(5): 588-598.
[6]张高勇. 积分几何不等式[J]. Acta Mathematica Sinica, English Series, 1991, 34(1): 72-90.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23612
相关话题/数学 中央 西南大学 统计学院 重庆