删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

带形上近临界随机游动的常返暂留性

本站小编 Free考研考试/2021-12-27

带形上近临界随机游动的常返暂留性 张美娟1, 周珂21. 中央财经大学统计与数学学院 北京 100081;
2. 对外经济贸易大学统计学院 北京 100029 Recurrence Classification of Random Walk on a Strip: Near-critical Mei Juan ZHANG1, Ke ZHOU21. School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, P. R. China;
2. School of Statistics, University of International Business and Economics, Beijing 100029, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(518 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究带形上的近临界随机游动,借助游动常返暂留性判别准则的显式表达,通过带扰动的线性差分系统的解的渐近性理论,以及矩阵的范数性质,在扰动矩阵不同的阶的条件下,给出了游动常返暂留性的判别.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-11-09
MR (2010):O211.6
基金资助:国家自然科学基金资助项目(11801596,11701083);中央财经大学科研创新团队支持计划资助
通讯作者:周珂E-mail: zhouke@uibe.edu.cn
作者简介: 张美娟,E-mail:zhangmeijuan@cufe.edu.cn
引用本文:
张美娟, 周珂. 带形上近临界随机游动的常返暂留性[J]. 数学学报, 2019, 62(5): 737-744. Mei Juan ZHANG, Ke ZHOU. Recurrence Classification of Random Walk on a Strip: Near-critical. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 737-744.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/737


[1] Benzaid Z., Lutz D. A., Asymptotic representation of solutions of perturbed systems of linear difference equations, Stud. Appl. Math., 1987, 77:195-221.
[2] Durrett R., Probability:Theory and Examples, 3rd Edition, Duxbury, 2004.
[3] Georgiou N., Wade A. R., Non-homogeneous random walks on a semi-infinite strip, Stoch. Process. Appl., 2014, 124:3179-3205.
[4] Hong W. M., Zhang M. J., Branching structure for the transient random walk on a strip in a random environment, Chinese Journal of Contemporary Math., 2016, 37(4):347-362.
[5] Hong W. M., Zhang M. J., Zhao Y. Q., Light-tailed behavior of stationary distribution for state-dependent random walks on a strip, Front. Math. China, 2014, 9(4):813-834.
[6] Hong W. M., Zhou K., Tail asymptotic of the stationary distribution for the state dependent (1, R)-reflecting random walk:near critical, arXiv:1302.3069v2, 2013.
[7] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge University Press, Cambridge, 1990.
[8] Levinson N., The asymptotic nature of solutions of linear differential equations, Duke Math. J., 1948, 15:111-126.
[9] Lo C. K., Wade A. R., Non-homogeneous random walks on a half strip with generalized Lamperti drifts, Markov Process. Related Fields, 2017, 23(1):125-146.
[10] Krámli A., Szász D., Random walks with internal degrees of freedom, I., Local limit theorems, Z. Wahrsche. Verw. Gebiete, 1983, 63:85-95.
[11] Neuts M. F., Stuctured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, Inc., New York, 1989.
[12] Resnick S., Adventures in Stochastic Processes, Birkhäuser Boston Inc., Boston, MA, 1992.

[1]王伟刚, 高振龙. 一类随机环境中多维分枝过程的极限理论[J]. 数学学报, 2018, 61(3): 457-468.
[2]周力凯, 林正炎, 王汉超. 稳定积分的弱收敛[J]. 数学学报, 2018, 61(3): 477-484.
[3]任敏, 张光辉. 右半直线上依分布收敛的独立随机环境中的生灭过程的常返性[J]. 数学学报, 2017, 60(3): 531-536.
[4]王汉兴, 杜瑞杰, 傅云斌, 颜云志. Markov随机分枝树节点的年龄结构[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 435-446.
[5]国洪松, 张梅. 离散时间下临界CMJ过程未来代的一些结果[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 79-90.
[6]王伟刚, 明瑞星, 甘建军. 变化环境下Galton-Watson过程的极限理论[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 923-930.
[7]靳荷艳. Neumann边界条件下Lp-Poincaré不等式最优常数的估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 665-674.
[8]严钧. 部分转移风险过程的中偏差[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 675-680.
[9]王玲娣, 张余辉. 单生(死)Q矩阵零流出(入)的判别准则[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 681-692.
[10]董迎辉, 徐亚娟. 障碍分红策略下的相关双边跳扩散模型[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 581-592.
[11]颜云志, 傅云斌, 王汉兴. 广义生灭分支过程存活后代数的分布[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 593-600.
[12]邢文杰, 王立洪. 函数型数据的近邻域估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 339-350.
[13]方龙祥, 张新生. α-stable运动驱动的OU过程的拟似然估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 395-408.
[14]王琳. Markov调制的随机泛函微分方程解的渐近性质[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 711-726.
[15]朱学红. 多维带跳倒向随机微分方程比较定理[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 777-786.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23493
相关话题/过程 数学 环境 中央财经大学 北京