删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Dedekind和及第一类Chebyshev多项式

本站小编 Free考研考试/2021-12-27

Dedekind和及第一类Chebyshev多项式 关文吉1, 李小雪21. 渭南师范学院数理学院 渭南 714099;
2. 西安航空学院理学院 西安 710077 The Dedekind Sums and First Kind Chebyshev Polynomials Wen Ji GUAN1, Xiao Xue LI21. School of Mathematics and Physics, Weinan Normal University, Weinan 714099, P. R. China;
2. School of Science, Xi'an Aeronautical University, Xi'an 710077, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(345 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用分析方法、Dedekind和及第一类Chebyshev多项式的算术性质,研究了一类关于Dedekind和及第一类Chebyshev多项式混合均值的渐近估计问题,并得到了一个较强的渐近公式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-02-17
MR (2010):O156.4
基金资助:国家自然科学基金资助项目(11771351);陕西省自然科学基础研究计划(2018JQ1093);渭南师范学院自然科学类研究项目(16YKS003);西安航空学院校级科研项目(2018KY0208)
通讯作者:李小雪,E-mail:lxx20072012@163.comE-mail: lxx20072012@163.com
作者简介: 关文吉,E-mail:1473621772@qq.com
引用本文:
关文吉, 李小雪. Dedekind和及第一类Chebyshev多项式[J]. 数学学报, 2019, 62(2): 219-224. Wen Ji GUAN, Xiao Xue LI. The Dedekind Sums and First Kind Chebyshev Polynomials. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 219-224.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/219


[1] Rademacher H., On the transformation of log η(τ), Journal of the Indian Mathematical Society, 1955, 19: 25–30.
[2] Rademacher H., Dedekind Sums, Carus Mathematical Monographs, The Mathematical Association of America, Washington D.C., 1972.
[3] Apostol T. M., Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976.
[4] Conrey J. B., Fransen E., Klein R. and Scott C., Mean values of Dedekind sums, Journal of Number Theory, 1996, 56(2): 214–226.
[5] Zhang W. P., A note on the mean square value of the Dedekind sums, Acta Mathematica Hungarica, 2000, 86(4): 275–289.
[6] Zhang W. P., On the mean values of Dedekind Sums, Journal de Théorie des Nombres de Bordeaux, 1996, 8(2): 429–442.
[7] Zhang W. P., A sum analogous to Dedekind sums and its hybrid mean value formula, Acta Arithmetica, 2003, 107: 1–8.
[8] Carlitz L., The reciprocity theorem of Dedekind Sums, Pacific Journal of Mathematics, 1953, 3(3): 513–522.
[9] Li X. X., Some identities involving Chebyshev polynomials, Mathematical Problems in Engineering, 2015(2015), Article ID 950695.
[10] Ma Y. K., Lv X. X., Several identities involving the reciprocal sums of Chebyshev polynomials, Mathematical Problems in Engineering, 2017(2017), Article ID 4194579.
[11] Clemente C., Identities and generating functions on Chebyshev polynomials, Georgian Mathematical Journal, 2012, 19(3): 427–440.
[12] Lee C. L., Wong K. B., On Chebyshev's Polynomials and Certain Combinatorial Identities, Bulletin of The Malaysian Mathematical Sciences Society, 2011, 2(2): 279–286.
[13] Wang T. T., Zhang H., Some identities involving the derivative of the first kind Chebyshev polynomials, Mathematical Problems in Engineering, 2015, Article ID 146313.
[14] Bircan N., Pommerenke C., On Chebyshev polynomials and GL(2, Z/pZ), Bulletin mateématiques de la Sociétédes sciences mathématiques de Roumanie, 2012, 4(4): 353–364.
[15] Yi Y., Zhang W. P., Some identities involving the Fibonacci polynomials, The Fibonacci Quarterly, 2002, 40(4): 314–318.
[16] Kim D. S., Kim T., Lee S., Some identities for Bernoulli polynomials involving Chebyshev polynomials, Journal of Computational Analysis & Applications, 2012, 16(1): 172–180.
[17] Kim T., Kim D. S., Seo J., et al., Some identities of Chebyshev polynomials arising from non-linear differential equations. Journal of Computational Analysis & Applications, 2016, 23(5): 820–832.
[18] He Y., Some new results on products of Apostol–Bernoulli and Apostol–Euler polynomials, Journal of Mathematical Analysis & Applications, 2015, 431(1): 34–46.

[1]王婷婷, 关雅靓. 一个与Dedekind和相关的新和式及其在特殊点的值[J]. 数学学报, 2019, 62(3): 497-502.
[2]吕星星. 三次Gauss和及二项指数和的混合均值[J]. 数学学报, 2019, 62(2): 225-232.
[3]刘宝利, 申诗萌. 两个不同Gauss和的混合均值[J]. 数学学报, 2019, 62(2): 255-260.
[4]冀永强, 张文鹏. 指数和与特征和的混合均值[J]. 数学学报, 2018, 61(5): 777-782.
[5]陈丽, 呼家源. 三次高斯和与Kloosterman和的线性递推公式[J]. 数学学报, 2018, 61(1): 67-72.
[6]杜晓英. 两项指数和及两项特征和的混合均值[J]. 数学学报, 2016, 59(3): 309-316.
[7]虞志刚. Lp-混合相交体[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 25-36.
[8]薛西锋;. r次剩余及其关于模p的逆之差的混合均值[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1411-141.
[9]刘华宁;张文鹏;. 广义Dedekind和与Hardy和[J]. Acta Mathematica Sinica, English Series, 2006, 49(5): 999-100.
[10]张文鹏. 广义Dedekind和与L-函数的一类恒等式[J]. Acta Mathematica Sinica, English Series, 2001, 44(2): 269-272.
[11]谢敏;张文鹏. 关于广义Dedekind和的2k次均值[J]. Acta Mathematica Sinica, English Series, 2001, 44(1): 85-94.
[12]贺夏莉;张文鹏. 关于Dedekind和的均值公式[J]. Acta Mathematica Sinica, English Series, 1998, 41(5): -.
[13]郑志勇. Dedekind和的一个性质[J]. Acta Mathematica Sinica, English Series, 1994, 37(5): -.
[14]朱来义. 关于修正的Lagrange插值多项式[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 136-144.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23370
相关话题/数学 航空 基础 数理 理学院