删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

求解多集分裂可行问题的一种新的松弛投影算法

本站小编 Free考研考试/2021-12-27

求解多集分裂可行问题的一种新的松弛投影算法 张艳君1,2, 赵金玲1, 徐尔11. 北京科技大学数理学院, 北京 100083;
2. 北京科技大学天津学院, 天津 301800 A New Relaxed Projection Method to Solve the Multiple-sets Split Feasibility Problem ZHANG Yanjun1,2, ZHAO Jinling1, XU Er11. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2. Tianjin College, University of Science and Technology Beijing, Tianjin 301800, China
摘要
图/表
参考文献(0)
相关文章(4)
点击分布统计
下载分布统计
-->

全文: PDF(376 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文提出了求解多集分裂可行问题(Multiple-sets Split Feasibility Problem,简称MSFP)的一种新的松弛投影算法.已有求解MSFP的算法大多采用邻近函数px):=(1/2αi||x-PCix)||2+(1/2λj||Ax-PQjAx)||2度量点到所有集合的距离并在迭代中直接利用其梯度方向,与此不同,本文引入了新的搜索方向,并基于此提出了新的算法.搜索方向的不同导致了算法的收敛性证明上的明显差异.初步的数值计算结果表明新算法对于不同的问题都能够有较快的收敛速度,且在问题维数增大时表现得越发明显.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2013-11-11
PACS:O221.2
O242.2
基金资助:国家自然科学基金(11101028,11271206),北京市青年英才计划资助项目.
引用本文:
张艳君, 赵金玲, 徐尔. 求解多集分裂可行问题的一种新的松弛投影算法[J]. 应用数学学报, 2017, 40(5): 641-652. ZHANG Yanjun, ZHAO Jinling, XU Er. A New Relaxed Projection Method to Solve the Multiple-sets Split Feasibility Problem. Acta Mathematicae Applicatae Sinica, 2017, 40(5): 641-652.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I5/641


[1] Censor Y, Elfving T, Kopf N, Bortfeld T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems, 2005, 21:2071-2084
[2] Xu H K. A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems, 2006, 22:2021-2034
[3] Zhang W, Han D, Li Z. A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse problems, 2009, 25:115001
[4] Zhao J, Yang Q. Self-adaptive projection methods for the multiple-sets split feasibility problem. Inverse Problems, 2011, 27:035009
[5] Zhang W, Han D, Yuan X. An efficient simultaneous method for the constrained multiple-sets split feasibility problem. Comput. Optim. Appl., 2012, 52:825-843
[6] He, H, Liu S. Muhammad Aslam Noor, Some Krasnonselskii-Mann Algorithms and the Multiple-Set Split Feasibility Problem. Fixed Point Theory and Applications. Volume 2010, Article ID 513956, 12 pages, doi:10.1155/2010/513956
[7] Zarantonello E H. Projections on convex sets in Hilbert space and spectral theory, Contributions to Nonlinear Functional Analysis. ed E.H. Zarantonello. New York:Academic, 1971
[8] Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems, 2004, 20:103-120
[9] Yang Q. The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems, 2004, 20:1261-1266
[10] Fukushima M. A relaxed projection method for variational inequalities. Math. Program., 1986, 35:58-70
[11] He B. Inexact implicit methods for monotone general variational inequalities. Math. Program., 1999, 86:199-217
[12] Zhang H, Wang Y. A new CQ method for solving split feasibility problem. Front. Math. China, 2010, 5(1):37-46
[13] Baillon J, Haddad G. Quelques propriétés des opérateurs angel-borés et n-cycliquement monotones. Isr. J. Math., 1977, 26:137-150
[14] Qu B, Xiu N. A note on the CQ algorithm for the split feasibility problem. Inverse Problems, 2005, 21:1655-1665
[15] Rockafellar R T. Convex Analysis. Princeton, NJ:Princeton University Press, 1970

[1]郑莲, 苟清明. 解变分不等式的次梯度二次投影算法[J]. 应用数学学报, 2014, 37(6): 968-975.
[2]叶明露. 变分不等式的一类二次投影算法 [J]. 应用数学学报(英文版), 2012, (3): 529-535.
[3]党亚峥, 高岩, 杨建芳. 凸可行问题的一种强收敛算法[J]. 应用数学学报(英文版), 2011, 34(2): 303-316.
[4]党亚峥, 高岩, 杨建芳. 凸可行问题的一种强收敛算法[J]. 应用数学学报(英文版), 2011, 34(1): 303-312.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14354
相关话题/应用数学 北京科技大学 天津 统计 计算