删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

可加Lévy噪声驱动随机微分方程的强Feller性与指数遍历性

本站小编 Free考研考试/2021-12-27

可加Lévy噪声驱动随机微分方程的强Feller性与指数遍历性 梁明杰1,2, 王健31. 三明学院信息工程学院, 三明 365004;
2. 福建师范大学数学与计算机科学学院, 福州 350007;
3. 福建师范大学数学与计算机科学学院, 福州 350007 for SDEs with Additive Lévy Noises LIANG Mingjie1,2, WANG Jian31. School of Information Engineering, Sanming University, Sanming 365004, China;
2. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China;
3. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
摘要
图/表
参考文献(0)
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(350 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在假定Lévy过程可表示成相互独立从属布朗运动和某个Lévy过程相加的条件下,我们得到该可加Lévy噪声驱动的随机微分方程的强Feller性与指数遍历性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2012-10-31
PACS:O211.63
基金资助:福建省教育厅中青年教师教育科研项目(JA15476),福建省自然科学基金(2014J01001,2015J01003),福建师范大学非线性分析及其应用校创新团队(IRTL1206),福建省数学分析及其应用重点实验室(FJKLMAA)资助项目
引用本文:
梁明杰, 王健. 可加Lévy噪声驱动随机微分方程的强Feller性与指数遍历性[J]. 应用数学学报, 2017, 40(2): 267-278. LIANG Mingjie, WANG Jian. for SDEs with Additive Lévy Noises. Acta Mathematicae Applicatae Sinica, 2017, 40(2): 267-278.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I2/267


[1] Schilling R L, Song R M, Vondra?ek Z. Bernstein Functions--Theory and Applications. Berlin: DeGruyter, 2010
[2] Kusuoka S, Marinelli C. On smoothing properties of transition semigroups associated to a class of SDEs with jumps. Ann. Inst. Henri Poincaré: Probab. Stat., 2014, 50: 1347-1370
[3] Wang F Y. Coupling for Ornstein-Uhlenbeck jump processes. Bernoulli, 2011, 17: 1136-1158
[4] Schilling R L, Wang J. On the coupling property of Lévy processes. Ann. Inst. Henri Poincaré: Probab. Stat., 2011, 47: 1147-1159
[5] Böttcher B, Schilling R L, Wang J. Constructions of coupling processes for Lévy processes. Stoch. Proc. Appl., 2011, 121: 1201-1216
[6] Schilling R L, Sztonyk P, Wang J. Coupling property and gradient estimates of Lévy processes via symbol. Bernoulli, 2012, 118: 1128-1149
[7] Schilling R L, Wang J. On the coupling property and the Liouville theorem for Ornstein-Uhlenbeck processes. J. Evol. Equ., 2012, 12: 119-140
[8] Wang F Y, Wang J. Coupling and strong Feller for jump processes on Banach spaces. Stoch. Proc. Appl., 2013, 123: 1588-1615
[9] Wang J. Linear evolution equations with cylindrical Lévy noise: gradient estimates and exponential ergodicity. Stoch. Anal. Appl., 2015, 33: 306-330
[10] Lin H N, Wang J. Successful couplings for a class of stochastic differential equations driven by Lévy processes. Sci. China Math., 2012, 55: 1735-1748
[11] Wang J. On the existence and explicit estimates for the coupling property of Lévy processes with drift. J. Theor. Probab., 2014, 21: 1021-1044
[12] Wang J. On the exponential ergodicity for Lévy driven Ornstein-Uhlenbeck processes. J. Appl. Probab., 2012, 49: 990-1004
[13] Zhang X C. Derivative formula and gradient estimates for SDEs driven by α-stable processes. Stoch. Proc. Appl., 2013, 123: 1213-1228
[14] Wang F Y, Wang J. Harnack inequalities for stochastic equations driven by Lévy noise. J. Math. Anal. Appl., 2014, 410: 513-513
[15] Applebaum D. Lévy Processes and Stochastic Calculus. Cambridge: Cambridge Univ. Press, 2004
[16] Situ R. Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analystical Techniques with Applications to Eigineering. New York: Springer-Verlag, 2005
[17] Priola E, Wang F Y. Gradient estimates for diffusion semigroups with singular coefficients. J. Funct. Anal., 2006, 126: 224-264
[18] Wang J. Regularity of semigroups generated by Lévy type operators via coupling. Stoch. Proc. Appl., 2010, 120: 1680-1700
[19] Meyn Sean P, Tweedie R T. Stability of Markovian Processes I!I!I: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab., 1993, 25: 518-548
[20] Wang J. Criteria for ergodicity of Lévy type operators in dimension one. Stoch. Proc. Appl., 2008, 118: 1909-1928

[1]郑石秋, 李寿梅. Lévy过程驱动的倒向随机微分方程生成元的表示定理[J]. 应用数学学报, 2015, 38(5): 892-900.
[2]臧彦超, 李俊平. 带BD功能反应和Levy噪声的随机捕食-被捕食系统的渐近性质[J]. 应用数学学报, 2015, 38(2): 340-349.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14300
相关话题/应用数学 福建师范大学 过程 统计 科学学院