删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

交错Ramanujan循环和公式的推广及其应用

本站小编 Free考研考试/2021-12-27

交错Ramanujan循环和公式的推广及其应用 雒秋明重庆师范大学数学学院, 重庆 401331 An Extension for the Alternating Ramanujan's Circular Summation Formula and Applications LUO QiumingDepartment of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing 401331
摘要
图/表
参考文献(0)
相关文章(0)
点击分布统计
下载分布统计
-->

全文: PDF(238 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文给出了交错Ramanujan循环和公式的一个推广并由此得到了一些新的theta函数恒等式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2014-10-08
PACS:O156
基金资助:重庆市自然科学基金(CSTC2011JJA00024),重庆市教委科技研究项目(KJ120625),重庆师范大学自然科学重点项目(10XLR017,2011XLZ07)资助.
引用本文:
雒秋明. 交错Ramanujan循环和公式的推广及其应用[J]. 应用数学学报, 2016, 39(2): 161-172. LUO Qiuming. An Extension for the Alternating Ramanujan's Circular Summation Formula and Applications. Acta Mathematicae Applicatae Sinica, 2016, 39(2): 161-172.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2016/V39/I2/161


[1] Chandrasekharan K. Elliptic Functions. Berlin, Heidelberg: Springer-Verlag, 1985
[2] Whittaker E T, Watson G N. A Course of Modern Analysis. ???: Cambridge University Press, 1927, 4th ed, Reprinted, 1963
[3] Bellman R. A brief introduction to theta functions. New York: Holt, Rinehart and Winston, 1961
[4] Ramanujan S. The Lost Notebook and Other Unpublished Papers. New Delhi: Narosa, 1988
[5] Andrews G E, Berndt B C. Ramanujan's Lost Notebook, Part III. New York: Springer-Verlag, 2012
[6] Chan H H, Liu Z G, Ng S T. Circular summation of theta functions in Ramanujan's Lost Notebook. J. Math. Anal. Appl., 2006, 316: 628-641
[7] Zeng X F. A generalized circular summation of theta function and its application. J. Math. Anal. Appl., 2009, 356: 698-703
[8] Chan S H, Liu Z G. On a new circular summation of theta functions. J. Number Theory, 2010, 130: 1190-1196
[9] Zhu J M. An alternate circular summation formula of theta functions and its applications. Appl. Anal. Discrete Math., 2012, 6: 114-125
[10] Zhu J. M. A note on a generalized circular summation formula of theta functions. J. Number Theory., 2012, 132: 1164-1169
[11] Boon M, Glasser M L, Zak J., Zucker I J. Additive decompositions of υ-functions of multiple arguments. J. Phys. A: Math. Gen., 1982, 15: 3439-3440
[12] Berndt B C. Ramanujan's Notebooks, Part V. New York: Springer-Verlag, 1998
[13] Ahlgren S. The sixth, eighth, ninth and tenth powers of Ramanujan theta function. Proc. Amer. Math. Soc., 2000, 128: 1333-1338
[14] Berndt B C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1991
[15] Borwein J M, Borwein P B. A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer. Math. Soc., 1991, 323: 691-701
[16] Cai Y, Chen S, Luo Q M. Some circular summation formulas for the theta functions. Bound. Value Probl., 2013, 2013: 59
[17] Chua K S. The root lattice An* and Ramanujan's circular summation of theta functions. Proc. Amer. Math. Soc., 2002, 130: 1-8
[18] Chua K S. Circular summation of the 13th powers of Ramanujan's theta function. Ramanujan J., 2001, 5: 353-354
[19] Gasper G, Rahma M. Basic Hypergeometric Series. Cambridge: Cambridge Unversity Press, 2004
[20] Liu Z G. Some inverse relations and theta function identities. Int. J. Number Theory, 2012, 8: 1977-2002
[21] Montaldi E, Zucchelli G. Additive decomposition for the product of two υ3 functions and modular equations. J. Math. Phys., 1989, 30: 2012-2015
[22] Murayama T. On an identity of theta functions obtained from weight enumerators of linear codes. Proc. Japan Acad., Ser. A, 1998, 74: 98-100
[23] Ono K. On the circular summation of the eleventh powers of Ramanujan's theta function. J. Number Theory, 1999, 76: 62-65
[24] Rangachari S S. On a result of Ramanujan on theta functions. J. Number Theory, 1994, 48: 364-372
[25] Shen L C. On the additive formula of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5. Trans. Amer. Math. Soc., 1994, 345: 323-345
[26] Son S H. Circular summation of theta functions in Ramanujan's Lost Notebook. Ramanujan J., 2004, 8: 235-272
[27] Xu P. An elementary proof of Ramanujan's circular summation formula and its generalizations. Ramanujan J., 2012, 27: 409-417

没有找到本文相关文献



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14140
相关话题/重庆师范大学 统计 文献 应用数学 数学学院