删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

椭圆最优控制问题分裂正定混合有限元方法的超收敛性分析

本站小编 Free考研考试/2021-12-27

唐跃龙, 华玉春
湖南科技学院, 永州 425199
收稿日期:2020-06-30出版日期:2021-11-14发布日期:2021-11-12


基金资助:国家自然科学基金项目(11401201),湖南省自然科学基金项目(2020JJ4323),湖南省教育厅科学研究项目(20A211,20C0854),湖南科技学院科学研究项目(18XKY063,20XKY059),湖南科技学院应用特色学科建设项目资助.

SUPERCONVERGENCE ANALYSIS OF SPLITTING POSITIVE DEFINITE MIXED FINITE ELEMENT FOR ELLIPTIC OPTIMAL CONTROL PROBLEM

Tang Yuelong, Hua Yuchun
Hunan University of Science and Engineering, Yongzhou 425199, China
Received:2020-06-30Online:2021-11-14Published:2021-11-12







摘要



编辑推荐
-->


首先利用变分原理和最优化理论得到了原问题的等价最优性条件;其次构造了椭圆最优控制问题分裂正定混合有限元方法的逼近格式;再次通过引入一些重要的中间变量和投影算子,并利用投影算子的相关性质,结合分裂正定混合有限元本身的逼近结果,得到了椭圆最优控制问题分裂正定混合有限元方法的超收敛性;最后数值实验结果验证了所得理论结果的正确性.
MR(2010)主题分类:
35J20
49J20
65N30
分享此文:


()

[1] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. Berlin:Springer-Verlag, 1991.
[2] Chen Y, Dai Y. Superconvergence for optimal control problems governed by semi-linear elliptic equations[J]. J. Sci. Comput., 2009, 39:206-221.
[3] Chen Y, Lu Z, Huang Y. Superconvergence of triangular Raviart-Thomas mixed finite element methods for bilinear constrained optimal control problem[J]. Comput. Math. Appl., 2013, 66(8):1498-1513.
[4] Douglas J, Roberts J. Global estimates for mixed finite element methods for second order elliptic equations[J]. Math. Comp., 1985, 44:39-52.
[5] Ewing R, Liu M, Wang J. Superconvergence of mixed finite element approximations over quadrilaterals[J]. SIAM J. Numer. Anal., 1999, 36:772-787.
[6] Guo H, Fu H, Zhang J. A splitting positive definite mixed finite element method for elliptic optimal control problem[J]. Appl. Math. Comput., 2013, 219:11178-11190.
[7] Hinze M. A variational discretization concept in control constrained optimization:the linearquadratic case[J]. Comput. Optim. Appl., 2005, 30, 45-63.
[8] Li R, Liu W, Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems[J]. J. Sci. Comput., 2002, 41(5):1321-1349.
[9] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定, 河北大学出版社, 1996.
[10] Lions J. Optimal Control of Systems Governed by Partial Differential Equations[M]. Berlin:Springer-Verlag, 1971.
[11] Liu W, Yan N. Adaptive Finite Element Methods for Optimal Control Governed by PDEs[M]. Beijing:Science Press, 2008.
[12] Tang Y, Hua Y. Superconvergence of splitting positive definite mixed finite element for parabolic optimal control problems[J]. Anal. Appl., 2018, 97(16):2778-2793.
[13] Wang F, Chen Y, Tang Y. Superconvergence of fully discrete splitting positive definite mixed FEM for hyperbolic equations[J]. Numer. Meth. Part. Differ. Equ., 2014, 30(1):175-186.
[14] Yang D. A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media[J]. Numer. Meth. Part. Differ. Equ., 2001, 17:229-249.
[15] Zhang J, Yang D. A splitting positive definite mixed element method for second-order hyperbolic equations[J]. Numer. Meth. Part. Differ. Equ., 2008, 25(3):622-636.

[1]李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=5189
相关话题/湖南 控制 阅读 河北大学 推荐