删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类四次有理插值样条的点控制

本站小编 Free考研考试/2021-12-27

刘植1, 肖凯1, 江平1, 谢进2
1. 合肥工业大学数学学院, 合肥 230009;
2. 合肥学院科学计算研究所, 合肥 230601
收稿日期:2014-11-21出版日期:2016-02-15发布日期:2016-01-22


基金资助:国家自然科学基金(11471093);高等学校博士学科点专项科研基金资助课题(20110111120026);安徽省教育厅自然科学重大研究项目(KJ2014ZD30);中央高校基本科研业务费专项经费(JZ2015HGXJ0175)


POINT CONTROL OF RATIONAL QUARTIC INTERPOLATING SPLINE

Liu Zhi1, Xiao Kai1, Jiang Ping1, Xie Jin2
1. School of Mathematics, Hefei University of Technology, Hefei 230009, China;
2. Institute of Scientific Computing, Hefei University, Hefei 230601, China
Received:2014-11-21Online:2016-02-15Published:2016-01-22







摘要



编辑推荐
-->


构造了一种有理四次插值样条,其分子为四次多项式分母为二次多项式.该有理插值样条是有界的、保单调且C2连续的,仅带有一个调节参数δ#em/em#.研究了有理四次插值样条的性质,同时给出了相应的函数值控制、导数值控制方法.这种方法的优点在于能够根据实际设计需要简单地选取适宜的参数,达到对曲线的形状进行局部调控的目的.
MR(2010)主题分类:
33F05

分享此文:


()

[1] Qi Duan, K. Djidjeli, W. G. Price and E. H. Twizell. A rational cubic spline based on function values[J]. Computers & Graphics, 1998, 22(4):479-486.

[2] Abbas M, Majid A A, Ali J M. Monotonicity-preserving C2 rational cubic spline for monotone data[J]. Applied Mathematics and Computation, 2012, 219(6):2885-2895.

[3] Duan Q, Wang L, Twizell E H. A new weighted rational cubic interpolation and its approxima-tion[J]. Applied mathematics and computation, 2005, 168(2):990-1003.

[4] Wang Q, Tan J. Rational quartic spline involving shape parameters[J]. Journal of information and Computational Science, 2004, 1(1):127-130.

[5] Wang Q, Tan J. Shape Preserving Piecewise Rational Biquartic Surfaces[J]. Journal of Information & Computational Science 3:2(2006) 295-302.

[6] 邓四清, 方逵, 谢进, 陆海波. 一种新的带参数双三次有理插值样条的有界性与点控制[J]. 计算数学, 2010(4):337-348.

[7] 张云峰, 包芳勋, 张彩明, 段齐. 一类有理插值曲面模型及其可视化约束控制[J]. 中国科学:数学, 2014, 44(7):729-740.

[8] Samsul Ariffin Abdul Karim and Kong Voon Pang. Point Control of the Curves Using Rational Quartic Spline[J]. Applied Mathematical Sciences, 2014, 8(42):2067-2086.

[9] Qi Duan, Fangxun Bao, Shitian Du, E.H. Twizell. Local control of interpolating rational cubic spline curves[J]. Computer-Aided Design, 2009, 41(11):825-829.

[10] Qi Duan, Xi pu Liu and Fangxun Bao. Local shape control of the rational interpolation curves with quadratic denominator[J]. International Journal of Computer Mathematics, 2010, 87(3):541-551.

[1]刘植, 陈晓彦, 江平, 张莉. 基于函数值的线性有理插值样条的区域控制[J]. 计算数学, 2011, 33(4): 367-372.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=170
相关话题/控制 数学 计算 科研 科学