In the past years, how to design PI/PID controller for desired performance despite various kinds of uncertainties, including unknown nonlinear dynamics and external disturbance, has been well studied. Lots of effective tuning methods for PI/PID controller were developed, with most of them being established for linear systems. Optimizing the gain of PID controller is an important topic drawing lots of attentions. Automatic tuning of PID controllers is another effective approach. Also, it is significant to analyze the set of PID gains to ensure the robustness requirements of closed-loop systems. In addition, the improvement of the PID control by introducing fractional order has been investigated. Besides, a novel method of designing nonlinear PID control to achieve desired performance is presented in. We also remark the pioneer work on the necessary and sufficient conditions for PID control to stabilize the systemswhere the nonlinear uncertain dynamics has a linear growth rate. It is shown that the integral part of PI control is able to force the tracking error to approach zero despite constant disturbance. There are other and newer results that automatically and optimally generate the multivariable gains of PID-type controllers. In addition, Saab provides necessary and sufficient conditions for convergence. However, few results are provided on ensuring PI control systems’ output to have satisfactory transient performance, which is greatly important in practice, especially under unknown nonlinear dynamics. To ensure desired satisfactory transient performance of systems’ output and tackle larger unknown nonlinear dynamics, this article considers the uncertainty estimator integrated PI control for a class of multi-input–multi-output (MIMO) nonlinear uncertain systems.
Actually, many effective uncertainty estimators for control object have been proposed in the last decades, including the extended state observer (ESO), the disturbance observer, the nonlinear disturbance observer, the extended high-gain observer, the uncertainty and disturbance estimator, and many others. The conditions for these uncertainty estimators to stabilize the nonlinear uncertain systems have been well studied, especially for the ESO-based control or active disturbance rejection control (ADRC). However, most of existing results only demonstrate qualitative condition or tuning laws (e.g., designing large enough gain of observer/estimator) for stabilization. The quantitative relationship between the parameters of observer/estimator and the size of uncertainties to be tackled for control object, which is very concerned by engineers, has not been shown. Since these uncertainty observers/estimators are mainly for estimating the uncertainties to be compensated in systems, it is natural to combine them and the conventional tracking error feedback laws, such as the popular PI methods. Nevertheless, how to quantitatively tune the observer/estimator integrated into the typical PI loop for better performance has not yet been studied.
This article focuses on integrating uncertainty estimator into PI controller for better robustness and transient performance against uncertain nonlinear coupling dynamics and time-varying disturbances. First, the descriptions for the sizes of three kinds of uncertainties in a class of multi-input–multi-output nonlinear systems are discussed. Then, the tuning laws of the typical uncertainty estimator, i.e., extended state observer (ESO), are quantitatively presented to ensure the stability of closed-loop systems. More importantly, it is shown that the desired transient performance of tracking error can be ensured by tuning the bandwidth of ESO. In addition, it is proven that much stronger disturbance rejection at low frequency can be achieved by integrating the uncertainty estimator module. The simulation results for calibration-free robotic eye-hand coordination system show the effectiveness of the proposed method.
Publication:
-IEEE Transactions on Automatic Control, 66, 7, 3409-3416 (2021).
Authors:
-Wenchao Xue (Institute of Systems Sciences, AMSS, Chinese Academy of Sciences)
-Sen Chen (Shaanxi Normal University)
-Cheng Zhao (Shandong University)
-Yi Huang (Institute of Systems Sciences, AMSS, Chinese Academy of Sciences)
-Jianbo Su (Shanghai Jiao Tong University)
附件下载: |
相关话题/附件
中央音乐学院2020年博士招生相关附件下载
相关附件: 博附件一:专业方向、招生导师.pdf博附件二(1):2020年作曲系博士研究生招生考试办法.pdf博附件二(2):2020年音乐学系博士研究生招生考试办法.pdf博附件二(3):2020年指挥系博士研究生申请-考核制招生考试办法.pdf博附件二(4):2020年钢琴系博士研究生申请-考核制招 ...中央音乐学院 本站小编 Free考研考试 2020-05-162020年中央音乐学院统考硕士研究生招生考试信息相关附件
相关附件: 附件一(1):统考全日制硕士生报考各专业方向导师名单.pdf附件一(2):统考非全日制硕士生报考各专业方向导师名单.pdf附件二(1):作曲系统考硕士研究生招生考试基本信息.pdf附件二(2):音乐学系统考硕士研究生招生考试基本信息.pdf附件二(3):指挥系统考硕士研究生招生考试基本信息.pdf附件二(4 ...中央音乐学院 本站小编 免费考研网 2019-10-222019年统考硕士研究生招生考试信息相关附件
详见附件。 相关附件: 附件一(1):全日制统考硕士考生报考专业方向.pdf附件一(2):非全日制统考硕士考生报考专业方向.pdf附件二(1):音乐学系统考硕士研究生招生考试基本信息.pdf附件二(2):音乐教育学院统考硕士研究生招生考试基本信息.pdf附件二(3):作曲系统考硕士研究生招生考试基本信息.pdf附件二(4 ...中央音乐学院 本站小编 免费考研网 2018-09-29北京交通大学2018年硕士研究生新生入学须知及附件下载
附件: 2018年研究生入学交费通知-挂网.doc 2018年研究生自主申请安装空调的说明.doc ...北京交通大学复试录取 本站小编 免费考研网 2018-07-202018年统考硕士研究生招生考试信息相关附件
相关附件: 附件一(1):全日制统考硕士考生报考专业方向、导师 .pdf附件一(2):非全日制统考硕士考生报考专业方向、导师.pdf附件二(1):音乐学系统考硕士研究生招生考试基本信息.pdf附件二(2):音乐教育学院统考硕士研究生招生考试基本信息.pdf附件二(3):作曲系统考硕士研究生招生考试基本信息.pdf附件二 ...中央音乐学院 本站小编 免费考研网 2018-07-172018年博士简章及附件
博士简章及附件.zip ...中央戏剧学院 本站小编 免费考研网 2018-07-17附件1:吉林大学第二医院2018年研究生复试人员名单
附件1:吉林大学第二医院2018年研究生复试人员名单 (此名单不包括推免生及5+3直推生) 序号 考生编号 姓名 1 101838217400321 白杰 2 101838217410413 郭芳 3 101838217412366 黄健 4 101838217413096 刘艺 5 101838217412202 吴倩倩 6 101838217413377 ...吉林大学复试录取 本站小编 免费考研网 2018-04-14中央音乐学院2017年博士招生相关附件下载
中央音乐学院2017年博士招生相关附件下载 相关附件: 博附件一:专业方向、招生导师与考试科目.pdf博附件二:博士研究生入学考试主要参考书目.pdf专家推荐书.doc ...中央音乐学院 本站小编 辅仁网 2017-06-032017年中央戏剧学院博士简章及附件
博士简章及附件.zip ...中央戏剧学院 本站小编 辅仁网 2017-06-03吉林大学行政学院关于2016年MPA(双证)复试时间及要求的通知(复试名单详见附件)
吉林大学行政学院2016年MPA(双证)复试通知各位参加2016年双证MPA复试的考生: 为了便于您进行复试前的准备,请参见以下简化流程。如有具体细节及疑问请参见《吉林大学行政学院2016年MPA(双证)复试细则》。http://mpa.jlu.edu.cn 通知公告栏一、基本复试线要求 初试成绩的复试线为:总分在165分及以上、外语(含英语 ...吉林大学复试录取 本站小编 免费考研网 2016-04-08