[1] 石荣. Navier-Stokes方程组的最优控制问题[J]. 江汉大学学报(自然科学版), 2009, 37(3):20-24.[2] Liu W B and Yan N. Adaptive finite element methods:optimal control governed by PDES[M]. Beijing:Science Press, 2008.[3] Hou L S, Turner, J C. Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls[J]. Numer. Math., 1995, 71(3):289-315.[4] Jameson A. Aerodynamic design via control theory[J]. J. Sci. Comput., 1988, 3(3):233-260.[5] Abrahama F, Behrb M and Heinkenschlossc M. The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations[J]. Finite Elements in Analysis and Design, 2004, 41(3):229-251.[6] Chen G, Feng M. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations[J]. Comput. Optim. Appl., 2014, 58(3):679-705.[7] Gunzburger M and Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls[J]. SIAM J. Numer. Anal., 2000, 37(5):1481-1512.[8] Hintermüller M and Hinze M. An SQP semi-smooth Newtontype algo-rithm applied to the instationary Navier-Stokes system subject to control constraints[J]. SIAM J. Optim., 2006, 16(4):1177-1200.[9] Abergel F and Temam R. On some optimal control problems in fluid mechanics[J]. Theoret. Comput. Fluid Mech., 1990, 1(6):303-325.[10] Gunzburger M, Hou L and Svobodny T. Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls[J]. Math. Comput., 1991, 57(195):123-151.[11] Gunzburger M and Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls[J]. SIAM J. Numer. Anal., 2000, 37(5), 1481-1512.[12] Tröltzsch F and Wachsmuth D. Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations[J]. ESAIM Control Optim. Calc. Var., 2006, 12(1):93-119.[13] Wachsmuth D. Sufficient second-order optimality conditions for convex control constraints[J]. J. Math. Anal. Appl., 2006, 319(1):228-247.[14] Chen G, Feng M and Xie C. A new projection-based stabilized method for steady convectiondominated convection-diffusion equations[J]. Appl. Math. Comput., 2014, 23989-106[15] 白燕红. 弹性方程杂交应力有限元/有限提及法的超收敛性分析及Oseen方程的新型稳定化有限元方法[D]. 成都:四川大学数学学院, 2015.[16] John V and Kaya S. A finite element variational multiscale method for the Navier-Stokes equations[J]. SIAM J. Scien. Comput., 2005. 26(5):1485-1503.[17] Feng M F, Bai Y H and Qin Y M. A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations[J]. J. Comput. Math., 2011, 29(4):415-440.[18] Bochev P, Dohrmann C and Gunzburger M. Stabilizatioin of low-order mixed finite elements for the Stokes equations[J]. SIAM J. Numer. Analy., 2006, 44:82-101.[19] Becker R and Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Colcolo, 2000, 38:173-199.[20] Blasco J and Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput. Meth. Appli. Mech. Engin., 2000, 182:277-300.[21] Dohrmann C and Bochev P. A stabilized finite element for the Stokes problem based on polynomial pressure projection[J]. Inter. J. Numer. Meth. Fuilds, 2004, 46:183-201.[22] Lions J L. Optimal control of systems governed by partial differential equations[M]. New YorkBerlin:Springer-Verlag, 1971.[23] Ciarlet P G. The finite element method for elliptic problems[M]. Amsterdam:North-Holland Publishing Company, 1987.[24] 覃燕梅, 冯民富, 尹蕾. Navier-Stokes方程的一种等阶稳定化亏量校正有限元法[J]. 计算数学, 2010, 32(1):1-14.[25] Burman E. Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[J]. Numerical Methods for Partial Differential Equations, 2008, 24(1):127-143.[26] Qin Y, Feng M and Zhou T. A new full discrete stabilized viscosity methods for the transient Navier-Stokes equations[J]. Appl. Math. Mech., 2009, 30(7):783-798. |