删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非定常Oseen方程最优控制问题的一种新型L2投影稳定化方法

本站小编 Free考研考试/2021-12-27

覃燕梅1, 冯民富2
1. 四川省高等学校数值仿真重点实验室/内江师范学院数学与信息科学学院, 四川内江 641112;
2. 四川大学数学学院, 成都 610064
收稿日期:2015-11-24出版日期:2016-12-15发布日期:2016-10-13
通讯作者:冯民富,E-mail:fmf@wtjs.cn.

基金资助:国家自然科学基金(编号:11271273),四川省教育厅自然科学基金(编号:16ZB0300)


A NEW L2 PROJECTION METHOD FOR THE OPTIMAL CONTROL OF UNSTEADY OSEEN EQUATIONS

Qin Yanmei1, Feng Minfu2
1. Key Laboratory of Numerical Simulation in the Sichuan Province/College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641112, Sichuan, China;
2. School of Mathematics, Sichuan University, Chengdu 610064, China
Received:2015-11-24Online:2016-12-15Published:2016-10-13







摘要



编辑推荐
-->


对非定常Oseen方程最优控制问题分析了一种新型L2投影稳定化方法.空间采用工程上好用的多项式有限元Pl/Pll≥1)逼近,时间采用中心差分离散.该稳定化方法对速度和压力分别采用全局或局部L2投影,不仅绕开了inf-sup条件对等阶元的束缚,而且克服了雷诺数较大,对流占优造成的解的震荡.该方法特点是,所有计算只需要在同一套网格上执行,不需要嵌套的网格或将速度和压力的梯度投影到粗网格上进行计算.给出了详细的误差分析,误差结果与雷诺数一致,且数值解的L2误差与雷诺数无关.
MR(2010)主题分类:
49J20
49K20
65M12
65M60

分享此文:
L2投影稳定化方法”的文章,特向您推荐。请打开下面的网址:http://www.computmath.com/jssx/CN/abstract/abstract223.shtml' name="neirong">L2投影稳定化方法'>

()

[1] 石荣. Navier-Stokes方程组的最优控制问题[J]. 江汉大学学报(自然科学版), 2009, 37(3):20-24.

[2] Liu W B and Yan N. Adaptive finite element methods:optimal control governed by PDES[M]. Beijing:Science Press, 2008.

[3] Hou L S, Turner, J C. Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls[J]. Numer. Math., 1995, 71(3):289-315.

[4] Jameson A. Aerodynamic design via control theory[J]. J. Sci. Comput., 1988, 3(3):233-260.

[5] Abrahama F, Behrb M and Heinkenschlossc M. The effect of stabilization in finite element methods for the optimal boundary control of the Oseen equations[J]. Finite Elements in Analysis and Design, 2004, 41(3):229-251.

[6] Chen G, Feng M. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations[J]. Comput. Optim. Appl., 2014, 58(3):679-705.

[7] Gunzburger M and Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls[J]. SIAM J. Numer. Anal., 2000, 37(5):1481-1512.

[8] Hintermüller M and Hinze M. An SQP semi-smooth Newtontype algo-rithm applied to the instationary Navier-Stokes system subject to control constraints[J]. SIAM J. Optim., 2006, 16(4):1177-1200.

[9] Abergel F and Temam R. On some optimal control problems in fluid mechanics[J]. Theoret. Comput. Fluid Mech., 1990, 1(6):303-325.

[10] Gunzburger M, Hou L and Svobodny T. Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls[J]. Math. Comput., 1991, 57(195):123-151.

[11] Gunzburger M and Manservisi S. Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed controls[J]. SIAM J. Numer. Anal., 2000, 37(5), 1481-1512.

[12] Tröltzsch F and Wachsmuth D. Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations[J]. ESAIM Control Optim. Calc. Var., 2006, 12(1):93-119.

[13] Wachsmuth D. Sufficient second-order optimality conditions for convex control constraints[J]. J. Math. Anal. Appl., 2006, 319(1):228-247.

[14] Chen G, Feng M and Xie C. A new projection-based stabilized method for steady convectiondominated convection-diffusion equations[J]. Appl. Math. Comput., 2014, 23989-106

[15] 白燕红. 弹性方程杂交应力有限元/有限提及法的超收敛性分析及Oseen方程的新型稳定化有限元方法[D]. 成都:四川大学数学学院, 2015.

[16] John V and Kaya S. A finite element variational multiscale method for the Navier-Stokes equations[J]. SIAM J. Scien. Comput., 2005. 26(5):1485-1503.

[17] Feng M F, Bai Y H and Qin Y M. A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations[J]. J. Comput. Math., 2011, 29(4):415-440.

[18] Bochev P, Dohrmann C and Gunzburger M. Stabilizatioin of low-order mixed finite elements for the Stokes equations[J]. SIAM J. Numer. Analy., 2006, 44:82-101.

[19] Becker R and Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Colcolo, 2000, 38:173-199.

[20] Blasco J and Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Comput. Meth. Appli. Mech. Engin., 2000, 182:277-300.

[21] Dohrmann C and Bochev P. A stabilized finite element for the Stokes problem based on polynomial pressure projection[J]. Inter. J. Numer. Meth. Fuilds, 2004, 46:183-201.

[22] Lions J L. Optimal control of systems governed by partial differential equations[M]. New YorkBerlin:Springer-Verlag, 1971.

[23] Ciarlet P G. The finite element method for elliptic problems[M]. Amsterdam:North-Holland Publishing Company, 1987.

[24] 覃燕梅, 冯民富, 尹蕾. Navier-Stokes方程的一种等阶稳定化亏量校正有限元法[J]. 计算数学, 2010, 32(1):1-14.

[25] Burman E. Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[J]. Numerical Methods for Partial Differential Equations, 2008, 24(1):127-143.

[26] Qin Y, Feng M and Zhou T. A new full discrete stabilized viscosity methods for the transient Navier-Stokes equations[J]. Appl. Math. Mech., 2009, 30(7):783-798.

[1]孙琪, 陶蕴哲, 杜强. 深度学习中残差网络的随机训练策略[J]. 计算数学, 2020, 42(3): 349-369.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=223
相关话题/计算 控制 数学学院 四川大学 数学