[1] Wright J, Ganesh A, Rao S, Ma Y. Robust Principal Component Analysis:Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization[C]. Advances in Neural Information Processing Systems 22:Conference on Neural Information Processing Systems A Meeting Held December. Curran Associates Inc. 2009. [2] Amit Y, Fink M, Srebro N, Ullman S. Unconvering shared structures in malticalass classification[J]. In:Proceeding of the Twenty-Fourth International Conference on Machine Learning, ACM, 2007, 17-24. [3] Argyriou A, Evgeniou T, Pontil M. Multi-task feature learning[J]. Adv. Neural Information Processing Systems, 2007, 19:41-48. [4] Meng F, Yang X M, Zhou C H. The augmented Lagrange multipliers method for matrix completion from corrupted samplings with application to mixed Gaussian-impulse noise removal[J]. Plos One, 2014, 9(9):108-125. [5] Zhou T, Tao D. GoDec:Randomized Lowrank and Sparse Matrix Decomposition in Noisy Case[C]. International Conference on Machine Learning. DBLP, 2011. [6] Li X D. Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions[J]. constructive approximation, 2013, 37(1):73-99. [7] Water A E, Sankaranarayanan A C, Baraniuk R G. SpaRCS:Recovering low-rank and sparse matrices from compressive measurements[J]. International Conference on Neural Information Processing Systems. 2011. [8] Wright J, Ganesh A, Min K. Compressive principal component pursuit[J]. Information and Inference A Journal of the Ima, 2013, 2:1276-1280. [9] Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis:exact recovery of corrupted low-rank matrices by convex optimization[J]. In:NIPS, 2009, 2080-2088. [10] Zhou Z, Li X, Wright J, et al. Stable Principal Component Pursuit[J]. Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on. IEEE, 2010. [11] Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012, 58:3047-3064. [12] Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y. Fast convex optimization algorithms for exact recovery of a corrupted low rank matrix[J]. Journal of the Marine Biological Association of the Uk, 2009, 56:707-722. [13] Lin Z, Chen M, Wu L, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[M]. UIUC Technical Report UIUL-ENG-09-2214, 2010. [14] Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3):615-640. [15] Cai J F, Cand`es E J, Shen Z. A Singular Value Thresholding Algorithm for Matrix Completion[J]. Siam Journal on Optimization, 2008, 20(4):1956-1982. [16] Li C, Wang C L, Wang J. Convergence analysis of the augmented Lagrange multiplier algorithm for a class of matrix compressive recovery[J]. Applied Mathematics Letters, 2016, 59:12-17. [17] Jain P, Netrapalli P, Sanghavi S. Low-rank Matrix Completion using Alternating Minimization[J]. Statistics, 2012, 665-674. [18] Tanner J, Wei K. Low rank matrix completion by alternating steepest descent methods[J]. Applied and Computational Harmonic Analysis, 2016, 40(2):417-429. [19] Netrapalli P, Niranjan U N, Sanghavi S, et al. Non-convex Robust PCA[J]. Computer Science, 2014, 1107-1115. [20] Wang Y X, Lee C M, Cheong L F, et al. Practical matrix completion and corruption recovery using proximal alternating robust subspace minimization[J]. International Journal of Computer Vision, 2015, 111(3):315-344. [21] Yi X Y, Park D, Chen Y D, Caramanis C. Fast algorithms for robust PCA via gradient descent[J]. In Advances in Neural Information Processing Systems, 2016, 4152-4160. [22] Zhang T, Yang Y. Robust PCA by manifold optimization[J]. Journal of Machine Learning Research, 2018, 19:1-39. [23] Cai H Q, Cai J F, Wei K. Accelerated alternating projections for robust principal component analysis[J]. Journal of Machine Learning Research, 2019, 20:1-33. [24] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. [25] Rendle S. Factorization machines with libfm[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(3):1-22. [26] Gu Q Q, Wang Z R, Liu H. Low-rank and sparse structure pursuit via alternating minimization[J]. In Arthur Gretton and Christian C. Robert, editors, AISTATS, volume 51 of JALR Workshop and Conference Proceedings, JMLR.org, 2016, 600-609. [27] Li L, Huang W, Gu Y H, et al. Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J]. IEEE Transactions on Image Processing, 2004, 13(11):1459-1472. |