删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式

本站小编 Free考研考试/2021-12-27

唐玲艳, 郭嘉, 宋松和
国防科技大学文理学院数学系, 长沙 410073
收稿日期:2019-12-11发布日期:2021-05-13


基金资助:“国家数值风洞”工程基础研究课题(NNW2018-ZT4A08)和国家自然科学基金(11571366).

BOUND-PRESERVING WEIGHTED COMPACT NONLINEAR SCHEMES FOR SCALAR CONSERVATION LAWS WITH STIFF SOURCE TERMS

Tang Lingyan, Guo Jia, Song Songhe
Department of Mathematics, College of Liberal Arts and Sciences, National University of Defence Technology, Changsha 410073, China
Received:2019-12-11Published:2021-05-13







摘要



编辑推荐
-->


带刚性源项的双曲守恒律方程是很多物理问题,特别是化学反应流的数学模型.本文考虑带刚性源项的标量双曲型守恒律方程,通过时空分离的方式,发展了一类保有界的WCNS格式.对于空间离散,我们将参数化的通量限制器推广到WCNS框架,使得方程对流项离散后满足极值原理.对于时间离散,我们将半离散的WCNS改写成指数形式,采用三阶修正指数型Runge-Kutta格式来控制方程的刚性,保持数值解的界.可以证明,本文格式对带刚性源项的一维标量守恒律方程具有保有界性和弱渐近保持性.数值试验验证了方法的有效性.
MR(2010)主题分类:
65D17
分享此文:


()

[1] Kružkov S N. First order quasilinear equations in several independent variables[J]. Mathematics of the USSR-Sbornik, 1970, 10(2):217.
[2] Colella P, Majda A and Roytburd V. Theoretical and numerical structure for reacting shock waves[J]. SIAM J. Sci. Stat. Comput. 1986, 7:1059.
[3] LeVeque R J, Yee H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms[J]. J. Comput. Phys., 1990, 86(1):187-210.
[4] Schroll H J and Winther R. Finite-difference schemes for scalar conservation laws with source terms[J]. IMA journal of numerical analysis, 1996, 16(2):201-215.
[5] 张增产, 沈孟育. 用时空守恒方法求带源项及刚性源项的守恒律方程[J]. 清华大学学报(自然科学版), 1998(11):87-90.
[6] Bao W and Jin S. The random projection method for hyperbolic conservation laws with stiff reaction terms[J]. J. Comput. Phys., 2000, 163(1):216-248.
[7] Dumbser M, Enaux C and Toro E F. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws[J]. J. Comput. Phys., 2008, 227(8):3971-4001.
[8] Wang W, Shu C W, Yee H and Sjögreen B. High order finite difference methods with subcell resolution for advection equations with stiff source terms[J]. J. Comput. Phys., 2012, 231(1):190-214.
[9] Huang J, Shu C W. Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms[J]. J. Comput. Phys., 2018, 361:693-723.
[10] Deng X, Zhang H. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22-44.
[11] Deng X, Liu X, Mao M. Advances in high-order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3):417-427.
[12] Deng X. High-order accurate dissipative weighted compact nonlinear schemes, Science in China(Series A), 45(3):356-370, 2002.
[13] Nonomura T, Fujii K. Effects of difference scheme type in high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2009, 228:3533-3539.
[14] Nonomura T, Goto Y, Fujii K. Improvements of efficiency in seventh-order weighted compact nonlinear scheme, in:6th Asia Workshop on Computational Fluid Dynamics (6AWCFD) AW6-16, Tokyo, Japan, 2010.
[15] Tang L Y, Song S H, Zhang H. High order maximum-principle-preserving and positivity-preserving weighted compact nonlinear schemes for hyperbolic conservation laws[J]. Appl. Math. Mech. -Engl. Ed., 2020, 41(1):173-192.
[16] Xu Z. Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws:one-dimensional scalar problem[J]. Mathematics of Computation, 2014, 83:2213-2238.
[17] Xiong T, Qiu J M, Xu Z. Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations[J]. Journal of Scientific Computing, 2016, 67:1066-1088.
[18] Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77:439-471.

[1]张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[2]王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[3]李军成, 刘成志. 带参数的C3连续拟Catmull-Rom样条函数[J]. 计算数学, 2018, 40(1): 96-106.
[4]唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 计算数学, 2017, 39(3): 309-320.
[5]李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128.
[6]王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.
[7]李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199.
[8]刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[9]李厚彪, 钟尔杰. 关于热传导方程半离散差分格式的一个注记[J]. 计算数学, 2015, 37(4): 401-414.
[10]王帅, 杭旭登, 袁光伟. 三维多面体网格上扩散方程的保正格式[J]. 计算数学, 2015, 37(3): 247-263.
[11]赵鑫, 孙建强, 何雪珺. Cahn-Hilliard方程的高阶保能量散逸性方法[J]. 计算数学, 2015, 37(2): 137-147.
[12]徐应祥. n维散乱数据带自然边界条件多元多项式样条插值[J]. 计算数学, 2014, 36(4): 407-426.
[13]毕亚倩, 刘新为. 求解界约束优化的一种新的非单调谱投影梯度法[J]. 计算数学, 2013, 35(4): 419-430.
[14]张磊, 曹礼群. 复合材料特征值的高阶多尺度Rayleigh商校正[J]. 计算数学, 2013, 35(4): 431-448.
[15]徐应祥, 关履泰. 散乱数据带自然边界条件二元样条光顺及数值微分[J]. 计算数学, 2013, 35(3): 253-270.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=5141
相关话题/计算 数学 自然 数据 国防科技大学