[1] Bellen A, Gugllelmi N, Zennaro M. On the contractivity and asymptotic stability of systems of delay differential equations of neutral type[J]. BIT Numer. Math., 1999, 39(1):1-24.[2] Bellen A, Zennaro M. Numerical Methods for Delay Differential Equations[M]. Oxford University Press, 2003.[3] Buhmann M, Iserles A. Staility of the discretized pantograph differential equation[J]. Math. Comput., 1993, 60(202):575-589.[4] ?ermák J. The asymptotic of solutions for a class of delay differential equations[J]. Rocky Mountain J. Math., 2003, 33:775-786.[5] ?ermák J, Jánský J. On the asymptotics of the trapezoidal rule for the pantograph equation[J]. Math. Comput., 2009, 78(268):2107-2126.[6] ?ermák J. The stability and asymptotic properties of the θ-methods for the pantograph equation[J]. IMA J. Numer. Anal., 2011, 31:1533-1551.[7] Engelborghs K, Roose D. On stability of LMS methods and characteristic roots of delay differential equations[J]. SIAM J. Numer. Anal., 2002, 40(2):629-650.[8] Huang C. Stablity analysis of general linear methods for nonautonomous pantograph equation[J]. IMA J. Numer. Anal., 2009, 29:444-465.[9] Iserles A. On the generalized pantograph functional-differential equation[J]. Eur. J. Appl. Math., 1993, 4:1-38.[10] Iserles A, Liu Y. On neutral functional-differential equations with proportional delays[J]. J. Math. Anal. Appl., 1997, 207:73-95.[11] Lehniger H, Liu Y. The functional-differential equation y'(t)=Ay(t) + By(λt) + Cy'(qt) + f(t)[J]. Eur. J. Appl. Math., 1998, 9:81-91.[12] Levin C, Pecaric J, Sarapa N. A note on Chung's strong law of large numbers[J]. J. Math. Anal. Appl. 1998, 217(1):328-334.[13] Li Y. Positive periodic solution of neutral Lotka-Volterra system with state dependent delays[J]. J. Math. Anal. Appl., 2007, 330:1347-1362.[14] Liu Y. Asymptotic behavior of functional-differential equations with proportional time delays[J]. Eur. J. Appl. Maths., 1996, 7:11-30.[15] Liu Y. Regular solutions of the Shabat equation[J]. J. Differ. Equations, 1999, 154:1-41.[16] Liu Z, Chen L. Periodic solution of neutral Lotka-Volterra system with periodic delays[J]. J. Math. Anal. Appl., 2006, 324:435-451.[17] Lu S, Ge W. Existence of positive periodic solution for neutral population model with taultiple delay[J]. Appl. Math. Comp., 2004, 153:885-905.[18] Ockendon J R, Tayler A B. The dynamics of a current collection system for an electric locomotive[J]. Proc. R. Soc. A. 1971, 322:447-468.[19] Wang W, Li S. Stability analysis of θ-methods for nonlinear neutral delay differential equations[J]. SIAM J. Sci. Comput., 2007, 193:285-301.[20] Wang W, Li S, Su K. Nonlinear stability of Runge-Kutta methods for neutral delay differential equations[J]. J. Comput. Appl. Math., 2008, 214:175-185.[21] Wang W, Zhang Y, Li S. Nonlinear stablity of one-leg methods for delay differential equations of neutral type[J]. Appl. Numer. Math., 2008, 58:122-130.[22] Wang W, Li S, Su K. Nonlinear stablity of general linear methods for neutral delay differential equations[J]. J. Comput. Appl. Math., 2009, 224:592-601.[23] Wang W, Zhang Y, Li S. Stability of continuous Runge-Kutta methods for nonlinear neutral delay-differential equations[J]. Appl. Math. Model., 2009, 33:3319-3329.[24] Zhang G, Xiao A, Wang W. The asymptotic behaviour of the θ-methods with constant stepsize for the generalized pantograph equation[J]. Int. J. Comput. Math., 2016, 93(9):1484-1504.[25] Zhao J, Cao W, Liu M. Asymptotic stability of Runge-Kutta methods for the pantograph equations[J]. J. Comput. Math., 2004, 22(4):523-534. |