[1] Mao X R. Stochastic Differential Equations and Applications[M]. Horword, Chichester, UK, 1997.[2] Bao H B, Cao J D. Stochastic global exponential stability for neutral-type impulsive neural networks with mixed time-delays and Markovian jumping parameters[J]. Commun. Nonlinear Sci. Numer. Simul., 2011, 16(9):3786-3791.[3] Guo C J, O'Regan D, Deng F Q, Agarwal R P. Fixed points and exponential stability for a stochastic neutral cellular neural network[J]. Appl. Math. Lett., 2013, 26(8):849-853.[4] Kolmanovskii V, Koroleva N, Maizenberg T, Mao X R, Matasov A. Neutral stochastic differential delay equations with Markovian switching[J]. Stochastic. Anal. Appl., 2003, 21(4):819-847.[5] Zhang H M, Gan S Q. Mean square convergence of one-step methods for neutral stochastic differential delay equations[J]. Appl. Math. Comput., 2008, 204(2):884-890.[6] Ding X H, Ma Q, Zhang L. Convergence and stability of the split-step θ-method for stochastic differential equations[J]. Computers Math. Appl., 2010, 60(5):1310-1321.[7] Cao W R, Hao P, Zhang Z Q. Split-step θ-method for stochastic delay differential equations[J]. Appl. Numer. Math., 2014, 76:19-33.[8] Ji Y, Yuan C. Tamed EM scheme of neutral stochastic differential delay equations[J]. J. Comput. Appl. Math., 2017, 326:337-357[9] Gan S Q, Schurz H, Zhang H M. Mean square convergence of stochastic θ-methods for nonlinear neutral stochastic differential delay equations[J]. Int. J. Numer. Anal. Model., 2011, 8(2):201-213.[10] Miloševi? M. Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method[J]. Math. Comput. Model., 2011, 54:2235-2251.[11] Miloševi? M. Implitcit numerical methods for highly nonlinear neutral stochastic differential equations with time-dependent delay[J]. Appl. Math. Comput., 2014, 224:741-760.[12] Ji Y T, Bao J H, Yuan C Y. Convergence of EM scheme for neutral stochastic differential delay equations[J]. 2016, arXiv:1511.07703v2.[13] Yan Z P, Xiao A G, Tang X. Strong convergence of the split-step theta method for neutral stochastic delay differential equations[J]. Appl. Numer. Math., 2017, 120:215-232.[14] Tan L, Yuan C G. Convergence rates of theta-method for neutral SDDEs under non-globally Lipschitz continuous coefficients[J]. 2017, arXiv:1701.00223v1.[15] Wu F K, Mao X R. Numerical solutions of neutral stochastic functional differential equations[J]. SIAM J. Numer. Anal., 2008, 46(4):1821-1841.[16] Jiang F, Shen Y, Wu F K. A note on order of convergence of numerical method for neutral stochastic functional differential equations[J]. Commun. Nonlinear Sci. Numer. Simul., 2012, 17(3):1194-1200.[17] Zhou S B, Fang Z. Numerical approximation of nonlinear neutral stochastic functional differential equations[J]. J. Comput. Appl. Math., 2013, 41(1-2):427-445.[18] Miloševi? M. Convergence and almost sure exponential stability of implicit numerical methods for a class of highly nonlinear neutral stochastic differential equations with constant delay[J]. J. Comput. Appl. Math., 2015, 280:248-264.[19] Gan S Q, Xiao A G, Wang D S. Stability of analytical and numerical solutions of nonlinear stochastic delay differential equations[J]. J. Comput. Appl. Math., 2014, 268:5-22.[20] Huang C M. Exponential mean square stability of numerical methods for systems of stochastic differential equations[J]. J. Comput. Appl. Math., 2012, 236(16):4016-4026.[21] Huang C M. Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2014, 259:77-86.[22] Wang W Q, Chen Y P. Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations[J]. Appl. Numer. Math., 2011, 61(5):696-701.[23] Zong X F, Wu F K. Exponential stability of the exact and numerical solutions for neutral stochastic delay differential equations[J]. Appl. Math. Model., 2015, 40(1):19-30.[24] Wang X J, Gan S Q. B-convergence of split-step one-leg theta methods for stochastic differential equations[J]. J. Comput. Appl. Math., 2012, 38(1-2):489-503.[25] Higham D J, Mao X R, Stuart A. Strong convergence of Euler-type methods for nonlinear stochastic differential equations[J]. SIAM J. Numer. Anal., 2002, 40:1041-1063.[26] Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations[M]. Springer, Berlin, 1992.[27] Bao J H, Yuan C G. Convergence rate of EM scheme for SDDEs[J]. Proc. Amer. Math. Soc., 20011, 141:3231-3243.[28] Wu F K, Mao X R, Chen K. The Cox-Ingersoll-Ross model with delay and strong convergence of its Euler-Maruyama approximate solutions[J]. Appl. Numer. Math., 2009, 59(10):2641-2658.[29] Mao X R, Szpruch L. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients[J]. J. Comput. Appl. Math., 2013, 238(1):14-28.[30] Cao W R, Zhang Z Q, Karniadakis G E. Numerical methods for stochastic delay differential equations via the Wong-Zakai approximation[J]. SIAM J. Sci. Comput., 2015, 37(1):A295-A318. |