[1] Mackay D J C. Introduction to Monte Carlo Methods[G]. In Jordan M I, editor, Learning in Graphical Models, Learning in Graphical Models, pages 175-204. Springer Netherlands, Dordrecht, 1998.[2] Liu W K, Belytschko T, Mani A. Random field finite elements[J]. International journal for numerical methods in engineering, 1986, 23(10):1831-1845.[3] Zhang D. Stochastic methods for flow in porous media:coping with uncertainties[M]. Academic press, 2001.[4] Xiu D, Karniadakis G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1):137-167.[5] Xiu D, Karniadakis G E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(43):4927-4948.[6] Xiu D. Numerical Methods for Stochastic Computations-A Spectral Method Approach[M]. Princeton University Press, 2010.[7] Lin G, Elizondo M, Lu S, Wan X. Uncertainty Quantification in Dynamic Simulations of Largescale Power System Models using the High-Order Probabilistic Collocation Method on Sparse Grids[J]. International Journal for Uncertainty Quantification, 2014, 4(3).[8] Tang J, Ni F, Ponci F, Monti A. Dimension-Adaptive Sparse Grid Interpolation for Uncertainty Quantification in Modern Power Systems:Probabilistic Power Flow[J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016.[9] Sun Y, Mao R, Li Z, Tian W. Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow[J]. Energies, 2016, 9(3):153.[10] Eldred M S, Burkardt J. Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification[J]. AIAA paper, 2009, 976(2009):1-20.[11] Xiu D. Efficient collocational approach for parametric uncertainty analysis[J]. Commun. Comput. Phys, 2007, 2(2):293-309.[12] Constantine P G, Eldred M S, Phipps E T. Sparse pseudospectral approximation method[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 229-232:1-12.[13] Conrad P R, Marzouk Y M. Adaptive Smolyak pseudospectral approximations[J]. SIAM Journal on Scientific Computing, 2013, 35(6):A2643-A2670.[14] Smolyak S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[C]. In Dokl. Akad. Nauk SSSR, volume 4 of Dokl. Akad. Nauk SSSR, page 123, 1963. 240-243.[15] Gerstner T, Griebel M. Dimension-adaptive tensor-product quadrature[J]. Computing, 2003, 71(1):65-87.[16] Winokur J G. Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification[D]. PhD thesis, Duke University, 2015.[17] Novak E, Ritter K. High dimensional integration of smooth functions over cubes[J]. Numerische Mathematik, 1995, 75(1):79-97. |