[1] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer, 2002.[2] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York:Springer, 1991.[3] Carey G F, Krishnan R. Penalty approximation of Stokes flow[J]. Comput. Methods Appl. Mech. Engrg., 1992, 35:169-206.[4] Cheng X L, Shaikh A W. Analysis of the iterative penalty method for the Stokes equations[J]. Appl. Math. Lett., 2006, 19:1024-1028.[5] Dai X X, Cheng X L. The iterative penalty method for Stokes equations using Q1-P0 element[J]. Appl. Math. Comput., 2008, 201:805-810.[6] Elman H C, David J S, Andrew J W. Finite Elements and Fast Iterative Solvers:With Applications in Incompressible Fluid Dynamics[M]. New York:Oxford University Press, 2005.[7] He Y. Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations[J]. SIAM J. Numer. Anal., 2003, 41(4):1263-1285.[8] Huang P, He Y, Feng X. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations[J]. Front. Math. China, 2013, 8:837-854.[9] Kheshgi H, Luskin M. Analysis of the finite element variable penalty method for Stokes equations[J]. Math. Comp., 1985, 45(172):347-363.[10] Layton W, Tobiska L. A two-level method with backtracking for the Navier-Stokes equations[J]. SIAM J. Numer. Anal., 1998, 35:2035-2054.[11] Layton W, Ye X. Two-level discretizations of the stream function form of the navier-stokes equations[J]. Numer. Funct. Anal. Optim., 1999, 20:909-916.[12] Lin S Y, Chin Y S, Wu T M. A modified penalty method for Stokes equations and its applications to Navier-Stokes equations[J], SIAM J. Sci. Comput., 1995, 16(1):1-19.[13] Oden J T, Kikuchi N, Song Y J. Penalty finite element methods for the analysis of Stokesian flows[J]. Comput. Methods Appl. Mech. Engrg., 1992, 31:297-329.[14] Xu J. Two-grid discretization techinques for linear and nonlinear PDEs[J]. SIAM J. Numer. Anal., 1996, 33(5):1759-1777. |