[1] Chaikin G M. An algorithm for high speed curve generation[J]. Comput. Graph. Image Process, 1974, 3(4):346-349.[2] Hormann K, Sabin M A. A family of subdivision schemes with cubic precision[J]. Comput. Aided Geomet. Des. 2008, 25(1):41-52.[3] Dyn N, Floater M S, Hormann K. A C2 four-point subdivision scheme with fourth order accuracy and its extensions[J]. in:M. Daehlen, K. Morkenm, L.L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces:Troms 2004, Modern Methods in Mathematics, Nashboro Press, Brentwood, Tenn, USA, 2005, pp. 145-156.[4] Tan J Q, Yao Y G, Cao H J. Convexity preservation of five-point binary subdivision scheme with a parameter[J]. Appl. Math. Comput. 2014, 245:279-288.[5] Dyn N, Gregory J A, Levin D. A four-point interpolatory subdivision scheme for curve design[J]. Comput. Aided Geomet. Des. 1987, 4(4):257-268.[6] 亓万锋, 罗钟铉, 樊鑫. 基于逼近型细分的诱导细分格式[J]. 中国科学, 2014, 44(7):755-768.[7] 邓重阳, 汪国昭. 曲线插值的一种保凸细分方法[J]. 计算机辅助设计与图形学学报, 2009, 21(8):1042-1046.[8] Deng C Y, Wang G Z. Incenter subdivision scheme for curve interpolation[J]. Comput. Aided Geomet. Des. 2010, 27(1):48-59.[9] Deng C Y, Ma W Y. Matching admissible G2 Hermite data by a biarc-based subdivision scheme[J]. Comput. Aided Geomet. Des. 2012, 29(6):363-378.[10] 刘秀平, 李宝军, 苏志勋, 郁博文. 插值细分曲线有理参数点的精确求值[J]. 计算数学, 2009, 31(3):253-260.[11] Deng C Y, Ma W Y. Efficient evaluation of subdivision schemes with polynomial reproduction property[J]. J. Comput. Appl. Math. 2016, 294(C):403-412.[12] Schaefer S, Warren J. Exact evaluation of limits and tangents for non-polynomial subdivision schemes[J]. Comput. Aided Geom. Design, 2008, 25(8):607-620.[13] Dyn N, Levin D. Analysis of asymptotically equivalent binary subdivision schemes[J]. J. Math. Anal. Appl. 1995, 193(2):594-621.[14] Jena M K, Shunmugaraj P, Das P C. A non-stationary subdivision scheme for curve interpolation[J]. ANZIAM J. 2003, 44(E):E216-E235.[15] Daniel S, Shunmugaraj P. Three point stationary and non-stationary subdivision schemes[C]//3rd International Conference on Geometric Modeling, Imaging. IEEE, 2008:3-8.[16] Fang M E, Ma W Y, Wang G Z. A generalized curve subdivision scheme of arbitrary order with a tension parameter[J]. Comput. Aided Geomet. Des. 2010, 27(9):720-733.[17] 庄兴龙, 檀结庆. 五点二重逼近细分法[J]. 图学学报, 2012, 33(5):57-61.[18] Siddiqi S S, Rehan K. Modified form of binary and ternary 3-point subdivision schemes[J]. Appl. Math. Comput. 2010, 216(3):970-982.[19] Siddiqi S S, Salam W, Rehan K. Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function[J]. Appl. Math. Comput. 2015, 258(C):120-129.[20] Cao H J, Tan J Q. A binary five-point relaxation subdivision scheme[J]. J. Inf. Comput. Sci. 2013, 10(18):5903-5910.[21] Mustafa G, Ghaffar A, Bari M. (2n-1)-point binary approximating scheme[C]//Digital Information Management (ICDIM), 2013 Eighth International Conference on. IEEE, 2013:363-368.[22] Dyn N, Levin D. Subdivision schemes in geometric modeling[J]. Acta Numerica, 2002, 11:73-144.[23] Hassan M F, Dodgson N A. Ternary and three-point univariate subdivision schemes[J]. In:Albert Cohen, Jean-Louis Merrien, Larry L. Schumaker (Eds.), Curve and Surface Fitting:Sant-Malo 2002, Nashboro Press, Brentwood, 2003, pp. 199-208. |