删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类新的(2n-1)点二重动态逼近细分

本站小编 Free考研考试/2021-12-27

张莉, 孙燕, 檀结庆, 时军
合肥工业大学数学学院, 合肥 230009
收稿日期:2016-01-12出版日期:2017-02-15发布日期:2017-02-17


基金资助:国家自然科学基金重点项目(U1135003);国家自然科学基金(61472466,61100126);中国博士后科学基金面上资助项目(2015M571926);浙江大学CAD、CG国家重点实验室开放课题(A1607).


A NEW FAMILY OF (2n-1)-POINT BINARY NON-STATIONARY APPROXIMATING SUBDIVISION SCHEMES

Zhang Li, Sun Yan, Tan Jieqing, Shi Jun
School of Mathematics, Hefei University of Technology, Hefei 230009, China
Received:2016-01-12Online:2017-02-15Published:2017-02-17







摘要



编辑推荐
-->


利用正弦函数构造了一类新的带有形状参数ω的left(2n-1right)点二重动态逼近细分格式.从理论上分析了随n值变化时这类细分格式的Ck连续性和支集长度;算法的一个特色是随着细分格式中参数ω的取值不同,相应生成的极限曲线的表现张力也有所不同,而且这一类算法所对应的静态算法涵盖了Chaikin,Hormann,Dyn,Daniel和Hassan的算法.文末附出大量数值实例,在给定相同的初始控制顶点,且极限曲线达到同一连续性的前提下和现有几种算法做了比较,数值实例表明这类算法生成的极限曲线更加饱满,表现力更强.
MR(2010)主题分类:
65D18

分享此文:
n-1)点二重动态逼近细分”的文章,特向您推荐。请打开下面的网址:http://www.computmath.com/jssx/CN/abstract/abstract300.shtml' name="neirong">n-1)点二重动态逼近细分'>

()

[1] Chaikin G M. An algorithm for high speed curve generation[J]. Comput. Graph. Image Process, 1974, 3(4):346-349.

[2] Hormann K, Sabin M A. A family of subdivision schemes with cubic precision[J]. Comput. Aided Geomet. Des. 2008, 25(1):41-52.

[3] Dyn N, Floater M S, Hormann K. A C2 four-point subdivision scheme with fourth order accuracy and its extensions[J]. in:M. Daehlen, K. Morkenm, L.L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces:Troms 2004, Modern Methods in Mathematics, Nashboro Press, Brentwood, Tenn, USA, 2005, pp. 145-156.

[4] Tan J Q, Yao Y G, Cao H J. Convexity preservation of five-point binary subdivision scheme with a parameter[J]. Appl. Math. Comput. 2014, 245:279-288.

[5] Dyn N, Gregory J A, Levin D. A four-point interpolatory subdivision scheme for curve design[J]. Comput. Aided Geomet. Des. 1987, 4(4):257-268.

[6] 亓万锋, 罗钟铉, 樊鑫. 基于逼近型细分的诱导细分格式[J]. 中国科学, 2014, 44(7):755-768.

[7] 邓重阳, 汪国昭. 曲线插值的一种保凸细分方法[J]. 计算机辅助设计与图形学学报, 2009, 21(8):1042-1046.

[8] Deng C Y, Wang G Z. Incenter subdivision scheme for curve interpolation[J]. Comput. Aided Geomet. Des. 2010, 27(1):48-59.

[9] Deng C Y, Ma W Y. Matching admissible G2 Hermite data by a biarc-based subdivision scheme[J]. Comput. Aided Geomet. Des. 2012, 29(6):363-378.

[10] 刘秀平, 李宝军, 苏志勋, 郁博文. 插值细分曲线有理参数点的精确求值[J]. 计算数学, 2009, 31(3):253-260.

[11] Deng C Y, Ma W Y. Efficient evaluation of subdivision schemes with polynomial reproduction property[J]. J. Comput. Appl. Math. 2016, 294(C):403-412.

[12] Schaefer S, Warren J. Exact evaluation of limits and tangents for non-polynomial subdivision schemes[J]. Comput. Aided Geom. Design, 2008, 25(8):607-620.

[13] Dyn N, Levin D. Analysis of asymptotically equivalent binary subdivision schemes[J]. J. Math. Anal. Appl. 1995, 193(2):594-621.

[14] Jena M K, Shunmugaraj P, Das P C. A non-stationary subdivision scheme for curve interpolation[J]. ANZIAM J. 2003, 44(E):E216-E235.

[15] Daniel S, Shunmugaraj P. Three point stationary and non-stationary subdivision schemes[C]//3rd International Conference on Geometric Modeling, Imaging. IEEE, 2008:3-8.

[16] Fang M E, Ma W Y, Wang G Z. A generalized curve subdivision scheme of arbitrary order with a tension parameter[J]. Comput. Aided Geomet. Des. 2010, 27(9):720-733.

[17] 庄兴龙, 檀结庆. 五点二重逼近细分法[J]. 图学学报, 2012, 33(5):57-61.

[18] Siddiqi S S, Rehan K. Modified form of binary and ternary 3-point subdivision schemes[J]. Appl. Math. Comput. 2010, 216(3):970-982.

[19] Siddiqi S S, Salam W, Rehan K. Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function[J]. Appl. Math. Comput. 2015, 258(C):120-129.

[20] Cao H J, Tan J Q. A binary five-point relaxation subdivision scheme[J]. J. Inf. Comput. Sci. 2013, 10(18):5903-5910.

[21] Mustafa G, Ghaffar A, Bari M. (2n-1)-point binary approximating scheme[C]//Digital Information Management (ICDIM), 2013 Eighth International Conference on. IEEE, 2013:363-368.

[22] Dyn N, Levin D. Subdivision schemes in geometric modeling[J]. Acta Numerica, 2002, 11:73-144.

[23] Hassan M F, Dodgson N A. Ternary and three-point univariate subdivision schemes[J]. In:Albert Cohen, Jean-Louis Merrien, Larry L. Schumaker (Eds.), Curve and Surface Fitting:Sant-Malo 2002, Nashboro Press, Brentwood, 2003, pp. 199-208.

[1]张迪, 刘华勇, 李璐, 张大明, 王焕宝. 基于几何连续的AT-β-Spline曲线曲面的构造[J]. 计算数学, 2018, 40(3): 227-240.
[2]李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128.
[3]刘植, 陈晓彦, 江平, 张莉. 基于函数值的线性有理插值样条的区域控制[J]. 计算数学, 2011, 33(4): 367-372.
[4]吴荣军, 彭国华, 罗卫民. 一类带参 B 样条曲线的形状分析[J]. 计算数学, 2010, 32(4): 349-360.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=300
相关话题/数学 计算 推荐 控制 合肥工业大学