高峰1,2, 代美玲1, 祁瑾1,3
AuthorsHTML:高峰1,2, 代美玲1, 祁瑾1,3
AuthorsListE:Gao Feng 1,2, Dai Meiling 1, Qi Jin 1,3
AuthorsHTMLE:Gao Feng 1,2, Dai Meiling 1, Qi Jin 1,3
Unit:1. 天津大学精密仪器与光电子工程学院,天津 300072;2. 天津市生物医学检测技术与仪器重点实验室,天津 300072;3. 天津医科大学附属肿瘤医院,天津 300060
Unit_EngLish:1.School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
2.Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China
3.Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
Abstract_Chinese:为了对肺结节的良、恶性诊断形成定量的客观分析和提高良、恶性的分类正确率, 针对肺结节CT图像提出了一种基于Bootstrap-异质SVM的集成学习方法.首先, 采用模糊聚类图像分割方法提取肺结节, 计算提取出的结节特征参数用于学习分类.然后, 以支持向量机(SVM)在不同核函数下的不同性能构造高差异性的子学习器, 在子学习器中引入Bootstrap算法来提高其学习精度, 通过集成学习方法实现学习器分类性能的整体改善.对146个(40个良性, 106个恶性)肺结节样本分别利用单个SVM、BP神经网络和Bootstrap-异质SVM集成学习方法进行了学习测试, 获得的最高分类正确率分别为80% 、82% 和 90% .实验结果表明:提出的Bootstrap-异质SVM集成学习方法将单个SVM分类器的最高正确率提高了10% , 同时也获得了高于BP神经网络8% 的分类正确率和较好的学习稳定性, 有效地改善了机器学习在不平衡数据集下对肺结节良恶性的分类能力.
Abstract_English:In order to diagnose lung nodules quantitatively and objectively and increase the classification accuracy,this study presents a classification method for lung nodules on CT images by ensemble learning based on Bootstrap-heterogeneous SVM. Firstly,a semi-automated segmentation method based on fuzzy clustering method was used to extract lung nodule pictures from lung CT images. The characteristic parameters were abstracted from lung nodule pictures for learning and classification. Next,the ensemble classifier model based on Bootstrap-heterogeneous SVM was constructed by high precision and high otherness sub-classifiers produced by Bootstrap algorithm and SVMs with different kernel functions to improve the overall performance of classification. In the experiment,single SVMs and BP Neural Network and the ensemble learning method based on Bootstrap-heterogeneous SVM were respectively used on 146(40 benign and 106 malignant)lung nodule samples to diagnose lung nodules. The highest classification accuracy is 80% ,82% ,90% respectively. The experimental results show that the ensemble learning method based on Bootstrap-heterogeneous SVM increases the highest classification accuracy of single SVM classifier by 10%,and it is also superior to BP Neural Network in the classification accuracy with an increase of 8% as well as in stability of learning. The proposed method effectively improves the classification performance of machine learning about lung nodules under unbalanced data sets.
Keyword_Chinese:肺结节; 模糊聚类; Bootstrap; 异质SVM; 集成学习
Keywords_English:lung nodules; fuzzy clustering; Bootstrap; heterogeneous SVM; ensemble learning
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=5802
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于Bootstrap-异质SVM集成学习的肺结节分类方法
本站小编 Free考研考试/2022-01-16
相关话题/方法
基于EKF的GNSS接收机自主完好性监测方法
宋建材1,侯春萍1,薛桂香2AuthorsHTML:宋建材1,侯春萍1,薛桂香2AuthorsListE:SongJiancai1,HouChunping1,XueGuixiang2AuthorsHTMLE:SongJiancai1,HouChunping1,XueGuixiang2Unit:1.天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16内燃机余热回收ORC系统三层次评价方法
舒歌群,霍永占,田华,于国鹏,赵明如AuthorsHTML:舒歌群,霍永占,田华,于国鹏,赵明如AuthorsListE:ShuGequn,HuoYongzhan,TianHua,YuGuopeng,ZhaoMingruAuthorsHTMLE:ShuGequn,HuoYongzhan,TianHu ...天津大学科研学术 本站小编 Free考研考试 2022-01-16前列腺手术机器人系统超声图像混合配准方法
郑勇男1,梁红花1,杨志永1,刘盛1,王伟2AuthorsHTML:郑勇男1,梁红花1,杨志永1,刘盛1,王伟2AuthorsListE:ZhengYongnan1,LiangHonghua1,YangZhiyong1,LiuSheng1,WangWei2AuthorsHTMLE:ZhengYong ...天津大学科研学术 本站小编 Free考研考试 2022-01-16大功率IGBT模块瞬态热阻的测试方法与装置
陆国权1,2,李洁1,梅云辉1,李欣1,王磊3AuthorsHTML:陆国权1,2,李洁1,梅云辉1,李欣1,王磊3AuthorsListE:LuGuoquan1,2,LiJie1,MeiYunhui1,LiXin1,WangLei3AuthorsHTMLE:LuGuoquan1,2,LiJie1, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于模糊标识指数的水功能区水质评价方法
徐国宾,翟晶AuthorsHTML:徐国宾,翟晶AuthorsListE:XuGuobin,ZhaiJingAuthorsHTMLE:XuGuobin,ZhaiJingUnit:水利工程仿真与安全国家重点实验室(天津大学),天津300072Unit_EngLish:StateKeyLaborator ...天津大学科研学术 本站小编 Free考研考试 2022-01-16REVO五轴测量系统重构与建模方法研究
张海涛1,2,刘书桂1,李杏华1,苏智琨1AuthorsHTML:张海涛1,2,刘书桂1,李杏华1,苏智琨1AuthorsListE:ZhangHaitao1,2,LiuShugui1,LiXinghua1,SuZhikun1AuthorsHTMLE:ZhangHaitao1,2,LiuShugui ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种基于SEM在线纳米切削的切削力检测方法
徐宗伟1,刘立芳1,贾瑞丽2,国晨1AuthorsHTML:徐宗伟1,刘立芳1,贾瑞丽2,国晨1AuthorsListE:XuZongwei1,LiuLifang1,JiaRuili2,GuoChen1AuthorsHTMLE:XuZongwei1,LiuLifang1,JiaRuili2,GuoC ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于GPD的夏季空调室外计算温度确定方法
田吉吉1,李佳庆1,郑爽2,韩文轩1,李明财3AuthorsHTML:田吉吉1,李佳庆1,郑爽2,韩文轩1,李明财3AuthorsListE:TianZhe1,LiJiaqing1,ZhengShuang2,HanWenxuan1,LiMingcai3AuthorsHTMLE:TianZhe1,Li ...天津大学科研学术 本站小编 Free考研考试 2022-01-16星载计算机SRAM单粒子微闩锁检测方法
刘沛龙1,2,3,常亮2,陈宏宇2,谭竹慧1,2,3AuthorsHTML:刘沛龙1,2,3,常亮2,陈宏宇2,谭竹慧1,2,3AuthorsListE:LiuPeilong1,2,3,ChangLiang2,ChenHongyu2,TanZhuhui1,2,3AuthorsHTMLE:LiuPei ...天津大学科研学术 本站小编 Free考研考试 2022-01-16考虑链间耦合的高速并联机器人惯性参数预估方法
赵庆,王攀峰,黄田AuthorsHTML:赵庆,王攀峰,黄田AuthorsListE:ZhaoQing,WangPanfeng,HuangTianAuthorsHTMLE:ZhaoQing,WangPanfeng,HuangTianUnit:天津大学机构理论与装备设计教育部重点实验室,天津30035 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16