删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于EKF的GNSS接收机自主完好性监测方法

本站小编 Free考研考试/2022-01-16

婵炴垶鎸撮崑鎾绘煛婢舵ê鐏犻柕鍫濈埣閹崇娀宕滄担鍦殸闂備浇妫勫畷顒€顫濋妸鈺佺煑妞ゆ牗鐟ょ花鏉库槈閺冣偓濠㈡﹢宕哄畝鍕殌闁告劦浜為崺鈥斥槈閹惧瓨灏紒妤冨枔閹风娀骞戦幇顔哄亽闂佸搫鍊归悷杈╂閿燂拷
2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懄缁嬪﹪鏁傞懖鈺冾槱婵☆偆澧楅敋缂併劑浜舵俊瀛樻媴缁涘缍婃俊顐ゅ閸垶鍩€椤戣法顦﹂柛娆忕箲缁鸿棄螖閸曨厹鍋掗梺鍝勫€归悷杈╂濮樿泛鐭楀┑鐘插€搁崸濠冾殽閻愬樊鍤熸繝鈧埄鍐跨矗婵鐗忕粈澶嬬箾閹寸姵鏆╂繛璇ф嫹547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤嬫嫹4婵炴垶鎸稿ú锝囩礊閹寸偟鈻旀い蹇撴礌閸嬫捇宕橀鍡楃厸闂佸吋婢橀崯顐㈢暦閵夛妇鈻旈柟鎹愬皺閻熷湱绱掓径瀣仼婵炶弓鍗虫俊瀛樻媴鐟欙絽浜鹃柛鎰典簽閸╋繝鏌涜箛锝呭闁告瑱绱曢幏鐘诲箻閸涱垳顦╅梺琛″亾闁圭ǹ绨肩粭澶愭煠閺勫繒绨挎い鏇樺灲瀵偊寮跺▎鎯уΤ闂佹寧绋戦ˇ顓㈠焵椤掑﹥瀚�40缂備礁顦粔宕囩箔閹惧鈻旀慨姗€纭搁弫瀣熆鐠団€充壕缂佽鲸鐟╅弻宀勫箣閿濆洠鍋撻搹瑙勫厹闁哄洨鍎戠槐婊堟煏閸℃洖绨籅A闂侀潧妫旂粈浣该瑰Δ鍛挃闁告侗鍘藉▍宀勬煕閺冩挾纾挎い銏$缁旂喖顢曢悩顐壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾跺閺佸顭跨拠鈥充簴闁逞屽厸閼冲爼濡甸悙鏉戭嚤婵﹩鍏涚槐锝吤归敐鍡欑煂妞ゃ垺纰嶇粩鐔碱敃閵堝洦鎯i梺鎸庣☉椤︻參鍩€椤掑﹥瀚�28缂備緡鍋夐褔骞冮幘鍓侀┏濠㈣泛饪撮崝鍛存煕閺冣偓缁嬫捇寮悽鍨厹闁哄洦姘ㄩ悷鈺佲槈閹炬潙鎼搁柍褜鍓ㄩ幏锟�1130缂備礁顦粔鍓佸垝閿熺姴绀傞柛娑橈攻濞堝矂鏌℃径瀣闁逞屽墾閹凤拷
宋建材1, 侯春萍1, 薛桂香2
AuthorsHTML:宋建材1, 侯春萍1, 薛桂香2
AuthorsListE:Song Jiancai1, Hou Chunping1, Xue Guixiang2
AuthorsHTMLE:Song Jiancai1, Hou Chunping1, Xue Guixiang2
Unit:1. 天津大学电气自动化与信息工程学院,天津 300072;2. 河北工业大学计算机科学与软件学院,天津 300040
Unit_EngLish:1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2.School of Computer Science and Engineering, Hebei University of Technology, Tianjin 300040, China
Abstract_Chinese:随着GNSS应用范围和研究深度的不断增加, 接收机完好性检测性能需求也相应提高.基于加权最小二乘法的“快照”估计方法只利用当前历元观测信息, 性能有一定局限性.本文提出了一种基于扩展卡尔曼滤波的RAIM检测和故障识别方法, 综合运用当前和之前历元的观测量进行估计, 利用正交分解方法转化为标量顺序计算, 避免了迭代过程的矩阵求逆.仿真结果表明该方法检测性能较好, 可以减小径向保护误差, 提高故障检测能力, 同时具有递推计算、运算量小、实时性高的优点.
Abstract_English:With the rapid development and application of global navigation satellite system(GNSS),the importance of receiver autonomous integrity monitoring(RAIM)is growing. This paper proposed a novel RAIM fault detection and identification method based on the extended Kalman filter(EKF),with an integrated use of all the observations of current and previous epoch to carry out the state estimate,and pretreatment pseudorange combined using carrier phase smoothing algorithm,which can further reduce the effect of distance error on RAIM algorithm and decrease the horizontal and vertical protection level. Compared with the traditional method based on weighted least squares method(WLS)estimation for GNSS receiver,this method improves the detection capability of slow transition fault and decreases the radial error protection. Simulation results show that this algorithm has a better detection performance with the merits of having a recursive calculation,a small amount of computation and real-timing capability.
Keyword_Chinese:卡尔曼滤波; 接收机自主完好性监测; 卫星导航; 接收机
Keywords_English:Kalman filter; RAIM; satellite navigation; receiver

PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=5813
閻庢鍠掗崑鎾绘⒑椤愶絿顣叉繝鈧幍顔惧崥婵顦糚闂佹寧绋掗惌顔剧博鐎涙ḿ鈻旈柛銉㈡櫓濞兼岸鏌ら弶鍨殶闁绘牜鍎ょ粙澶愬箻閼碱剛鎳濋柣鐘叉处瀹曟﹢锝炵€n偓绱i柟杈鹃檮椤撶懓銆掑铏《婵犫偓閸涘瓨鏅悘鐐插⒔濡层劑鏌¢崼顐㈠幐缂佹顦靛畷姘紣娴d警浼囬梺鍛婂笒濡繈骞愰崼鏇熸櫖濞达綀娅i崡婊堟倵閻㈠灚鍤€闁搞劍绻勭划璇参旂€n剛锛�
547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤€閰i幊鎾诲礃椤忓棗鐓涢梺鍏兼緲閸燁偄鐣烽敓锟�1130缂備礁顦粔鐢碘偓鍨皑閳ь剝顫夌喊宥夊汲閳ь剟鏌℃径瀣婵炲牊鍨垮畷锟犲礃瑜忕粙鍥╃磼婢跺﹦效闁告ǜ鍊栫缓钘壩旈崪浣规瘜闁圭厧鐡ㄩ幐鍫曞焵椤戞寧绁版い顐㈩儐閿涙劙骞嬮婊咁槷濠电偞鍨归弫绋棵烘繝鍥ㄥ殣閺夊牜鍋掗崵鏃堟煏閸℃洝鍏岀紒顔光偓瓒佽鎯斿☉鎺戜壕濞达絿鏅Σ鍫ユ煕閹烘挻鍋犻柍褜鍏涚欢姘跺闯妤e啯鎳氱€广儱鍟犻崑鎾存媴閻戞ê鈧偟鈧鎮堕崕顖炲焵椤戣儻鍏屾い鎾存倐閹爼宕遍幇銊ヤ壕濞达絾浜芥禒锕€霉閸忕厧鎼搁柍褜鍏涘ù鍥磼閵婏箑顕辨慨妯稿劗閸嬫挻鎷呯憴鍕暚闂佺厧寮惰ぐ鍐紦妤e啯鍋犻柛鈩冨姀閸嬫挻鎷呴悿顖氬箑闂佸搫鍊稿ú銏ゅ焵椤戞寧绁板瑙勬崌瀵敻顢涘Ο宄颁壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾村閸嬫挻鎷呴崷顓溾偓濠囨倵濞戝疇绀嬮柍褜鍏涚粈浣轰焊閹殿喒鍋撳☉瀹犵闁逞屽厸濞村洭顢橀崫銉т笉婵°倓鐒︾花姘舵煏閸℃洜顦︾€圭ǹ顭峰畷锝囦沪閸屾浜惧ù锝呮啞閸曢箖鏌i悙鍙夘棑闁逞屽厸閻掞箓寮崒姘f煢婵懓娲犻崑鎾存媴閸涘﹥鍣搁柣搴㈠喕鐠愮喖鍩€椤戞寧顦风紓宥咁儔閹虫牠鎳犻鍐炬蕉缂備焦鍐婚幏锟�28缂備緡鍋夐褔顢楅悢铏圭煋闁规惌鍨崇壕锟�
相关话题/接收机 方法

闂佺懓鐡ㄩ崝鎺旀嫻閻旂儤瀚氶柛娆嶅劚閺佲晠鎮跺☉杈╁帨缂佽鲸绻堝畷姘跺幢閺囥垻鍙愰柣鐘叉搐婢т粙鍩㈤懖鈺傚皫闁告洦鍓氶悘鎰版⒑閸撗冧壕閻㈩垰顕禍鍛婃綇椤愩垹骞嬮梺鍏煎劤閸㈣尪銇愰敓锟�40%闂佸湱绮崝鏍垂濮樿鲸灏庢慨妯垮煐鐏忣亪鏌ㄥ☉铏
闂佽浜介崝宀€绮诲鍥ㄥ皫婵ǹ鍩栫亸顏堟煛婢跺﹤鏆熸繛澶樺弮婵℃挳宕掑┑鎰婵炲濯寸紞鈧柕鍡楀暣瀹曪綁顢涢悙鈺佷壕婵ê纾粻鏍瑰⿰鍕濞寸姴鐗忕槐鏃堝箣閻樺灚鎯i梻渚囧亝閺屻劎娆㈤悙瀵糕枖闁绘垶蓱閹疯京绱掗弮鈧悷锔炬暜瑜版帞宓侀柛顭戝櫘閸氬懎霉閼测晛袥闁逞屽墯闁芥墳P婵炴潙鍚嬮懝楣冨箟閹惰棄鐏虫繝鍨尵缁€澶愭煟閳ь剙濡介柛鈺傜洴閺屽懎顫濆畷鍥╃暫闁荤姴娲よぐ鐐哄船椤掑倹鍋橀柕濞у嫮鏆犻梺鍛婂笒濡棃妫呴埡鍛叄闁绘劦鍓欐径宥夋煙鐎涙ḿ澧柟鐧哥秮楠炲酣濡烽妸銉︾亷婵炴垶姊瑰姗€骞冨Δ鍛櫖鐎光偓閸愭儳娈炬繛瀵稿缂嶁偓闁靛棗鍟撮幊銏犵暋閺夎法鎮�40%闂佸湱绮崝鏍垂濮樿泛违闁稿本绻嶉崵锕€霉閻欏懐绉柕鍡楀暟閹峰綊顢樺┑鍥ь伆闂佸搫鐗滈崜娑㈡偟椤栨稓顩烽悹浣哥-缁夊灝霉濠х姴鍟幆鍌炴煥濞戞ǹ瀚版繛鐓庡缁傚秹顢曢姀鐘电К9闂佺鍩栬彠闁逞屽墮閸婃悂鎯冮姀銈呯闁糕剝娲熼悡鈺呮⒑閸撗冧壕閻㈩垱鎸虫俊瀛樻媴鐟欏嫬闂梺纭呯堪閸庡崬霉濮椻偓閹囧炊閳哄啯鎯i梺鎸庣☉閼活垵銇愰崒鐐茬闁哄顑欓崝鍛存煛瀹撴哎鍊ら崯鍫ユ煕瑜庣粙蹇涘焵椤戣儻鍏屾繛鍛妽閹棃鏁冩担绋跨仭闂佸憡鐨滄担鎻掍壕濞达綁鏅茬花鎶芥煕濡や礁鎼搁柍褜鍏涚粈浣圭閺囩喓鈹嶉幒鎶藉焵椤戝灝鍊昋缂備礁鏈钘壩涢崸妤€违濞达綀娅i崣鈧繛鎴炴煥缁ㄦ椽鍩€椤戞寧绁伴柣顏呮尦閹椽鏁愰崶鈺傛儯闂佸憡鑹剧€氼剟濡甸崶顒傚祦闁告劖褰冮柊閬嶆煏閸☆厽瀚�