删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南开大学统计与数据科学学院导师教师师资介绍简介-王磊

本站小编 Free考研考试/2020-09-19



通信地址:
    天津市南开区卫津路94号
    南开大学统计与数据科学学院
    邮编: 300071
办公地点:     范孙楼349
电子邮箱:     lwangstat@nankai.edu.cn

 教育背景

2008.9-2014.6 博士,华东师范大学,概率论与数理统计,导师:濮晓龙 教授

2012.9-2013.9 联合培养博士,加拿大英属哥伦比亚大学,数理统计,导师:陈家骅 教授

2004.9-2008.6 本科,南开大学,数学与应用数学

__________________________________________________

工作经历

2018.12-       南开大学统计与数据科学学院,副研究员

2017.9-2018.12 南开大学统计研究院 & 统计与数据科学学院,讲师

2014.9-2017.6 美国威斯康辛大学麦迪逊分校,博士后, 导师:Prof. Jun Shao, Prof. Menggang Yu

__________________________________________________

获奖情况

2018年, 天津市131创新型人才第三层次

2017年, 南开大学百名青年学科带头人培养计划

2016年,上海市优秀博士学位论文

2014年, 华东师范大学优秀博士学位论文

2012年, 博士研究生国家奖学金

2011年, 泛长三角应用统计学术年会论文竞赛一等奖

2010年, 全国统计建模大赛二等奖

 (一)已发表或接收文章(*通讯作者 #指导学生)

[29] Ying Zhang#, Lei Wang, Menggang Yu and Jun Shao. Quantile treatment effect estimation with many possible confounders. Statistical Theory and Related Fields, to appear.

[28] Lei Wang, Siying Sun# and Zheng Xia#. An efficient multiple imputation approach for estimating equations with response missing at random. Journal of Systems Science and Complexity, to appear.

[27] Ting Zhang# and Lei Wang. Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response. Computational Statistics and Data Analysis, to appear.

[26] Jun Shao and Lei Wang. (2019) Nearest neighbor imputation under single index models. Statistical Theory and Related Fields, 3 (2): 208-212.

[25] Lei Wang, Jun Shao, Fang Fang*. Simultaneous propensity and instrument selection with nonignorable nonresponse. Statistica Sinica Doi:10.5705/ss.202019.0025, to appear.

[24] Puying Zhao, Lei Wang* and Jun Shao. (2019) Empirical likelihood and Wilks phenomenon for data with nonignorable missing values. Scandinavian Journal of Statistics, 46 (4), 1003-1024. (共同一作)

[23] Lei Wang*. (2019) Multiple robustness estimation in causal inference. Communications in Statistics–Theory and Methods, 48 (23): 5701-5718.

[22] Tram Ta, Jun Shao, Quefeng Li and Lei Wang*. Generalized regression estimators with high-dimensional covariates. Statistica Sinica, Doi:10.5705/ss.202017.0384, to appear.

[21] Lei Wang*. (2019) Dimension reduction for kernel-assisted M-estimators with missing response at random. Annals of the Institute of Statistical Mathematics, 71 (4): 889-910.

[20] Lei Wang, Cuicui Qi# and Jun Shao*. (2019) Model-assisted regression estimators for longitudinal data with nonignorable dropout. International Statistical Review, 87 (S1): S121-S138.

[19] Cui Xiong, Jun Shao* and Lei Wang. (2019) Convex surrogate minimization in classification. Statistica Sinica, 29 (1): 353-369.

[18] Lei Wang* (2018) Some issues on longitudinal data with nonignorable dropout, a discussion of ``Statistical Inference for Nonignorable Missing-Data Problems: A Selective Review'' by Niansheng Tang and Yuanyuan Ju. Statistical Theory and Related Fields, 2 (2): 137-139.

[17] Lei Wang* and Dan Yang#. (2018) F-distribution calibrated empirical likelihood ratio tests for FDR control in multiple hypothesis testing. Journal of Nonparametric Statistics, 30 (3): 662-679.

[16] Ying Zhang#, Menggang Yu, Jun Shao and Lei Wang* . (2018) Impact of sufficient dimension reduction in nonparametric estimation of causal effect. Statistical Theory and Related Fields, 2 (1): 89-95.

[15] Ying Zhang# and Lei Wang*.(2018) Dimension reduction in estimating equations with covariates missing at random. Journal of Nonparametric Statistics, 30 (2): 491-504.

[14] Puying Zhao, Lei Wang* and Jun Shao.(2018)Analysis of longitudinal data under nonignorable nonmomotone nonresponse. Statistics and Its Interface, 11 (2): 265-279. (共同第一作者).

[13] Lei Wang*.(2017) Bartlett-corrected two-sample adjusted empirical likelihood via resampling. Communications in Statistics-Theory and Methods, 46(22):10941-10952 .

[12] Lei Wang and Guangming Deng. (2017) Dimension-reduced empirical likelihood inference for response mean with data missing at random. Journal of Nonparametric Statistics, 29 (3): 594-614.

[11] Jun Shao and Lei Wang*. (2016) Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika, 103 (1): 175-187.

[10] Dongdong Xiang, Yan Li, Lei Wang and Xiaolong Pu*. (2016) Double stepwise likelihood ratio test for onesided composite Hypotheses. Quality Technology and Quantitative Management, 13 (3): 355-366.

[9] Lei Wang, Jiahua Chen* and Xiaolong Pu. (2015) Resampling calibrated adjusted empirical likelihood. Canadian Journal of Statistics , 43 (1): 42-59.

[8] Lei Wang*, Wendong Li, Guanfu Liu and Xiaolong Pu. (2015) Spatial median depth-based robust adjusted empirical likelihood. Journal of Nonparametric Statistics, 27 (4): 485-502.

[7] Lei Wang*, Xiaolong Pu and Yan Li. (2015) Asymptotic optimality of combined double sequential weighted probability ratio test for three composite hypotheses. Mathematical Problems in Engineering, 2015: 1-8.

[6] Lei Wang, Xiaolong Pu, Yan Li and Yukun Liu*. (2015) Sequential two-stage D-optimality sensitivity test for binary response data. Communications in Statistics-Simulation and Computation , 44 (7):1833-1849.

[5] Guanfu Liu, Xiaolong Pu, Lei Wang and Dongdong Xiang*. (2015) CUSUM chart for detecting range shifts when monotonicity of likelihood ratio is invalid. Journal of Applied Statistics , 42 (8): 1635-1644.

[4] Lei Wang, Xiaolong Pu, Donddong Xiang and Yan Li*. (2014) Asymptotic optimality of double sequential mixture likelihood ratio test. Journal of Statistical Computation and Simulation , 84 (4): 916-929.

[3] Lei Wang, Yukun Liu, Wei Wu and Xiaolong Pu*.(2013) Sequential LND sensitivity test for binary response data. Journal of Applied Statistics, 40 (11): 2372-2384.

[2] Lei Wang, Donddong Xiang, Xiaolong Pu and Yan Li*. (2013) A double sequential weighted probability ratio test for one-sided composite hypotheses. Communications in Statistics-Theory and Methods, 42 (20): 3678-3695.

[1] Dongdong Xiang, Xiaolong Pu, Lei Wang and Yan Li*.(2012) Degenerate-generalized likelihood ratio test for one-sided composite hypotheses. Mathematical Problems in Engineering , Volume 2012 (2012): 1–11.

 学术会议报告

(19) 邀请报告, IMS China, 大连, 中国, 2019.

(18) 邀请报告, ICSA China, 天津, 中国, 2019.

(17) 邀请报告, 大数据与现代统计国际研讨会, 上海, 中国, 2019.

(16) 邀请报告, 北京大学, 北京, 中国, 2019.

(15) 邀请报告, 中国现场统计研究会生存分析分会, 临汾, 中国, 2019.

(14) 邀请报告, 中国现场统计研究会高维数据统计分会第五届学术研讨会, 杭州, 中国, 2019.

(13) 邀请报告, ICSA Data Science, 西双版纳, 中国, 2019.

(12) 邀请报告, 第十届全国概率统计年会, 成都, 中国, 2018.

(11) 邀请报告, 统计学与数据科学青年学者论坛, 北京, 中国, 2018.

(10) 邀请报告, 有限混合模型及复杂模型, 桂林, 中国, 2018.

(9) 邀请报告, ICSA focus on data science, 青岛, 中国, 2018.

(8) 邀请报告, 南开大学--伯明翰大学联合讨论会, 南开大学, 中国, 2018.

(7) 邀请报告, 现代统计学研讨会, 厦门大学, 中国, 2017.

(6)邀请报告, 核心数学与组合数学教育部重点实验室汇报会, 南开大学, 中国, 2017.

(5) 邀请报告, 概率统计青年学者论坛, 南开大学, 中国, 2017.

(4) 邀请报告,2017 ICSA Applied Statistics Symposium,芝加哥,美国, 2017.

(3) 邀请报告及墙报展示,18th Meeting of New Researchers in Statistics and Probability会议,威斯康辛大学麦迪逊分校,美国, 2016.

(2)邀请报告,第三届全国概率统计青年学者会议,徐州,中国, 2013.

(1) 邀请报告,泛长三角应用统计学术年会,上海,中国, 2011.

 学术会议报告

(19) 邀请报告, IMS China, 大连, 中国, 2019.

(18) 邀请报告, ICSA China, 天津, 中国, 2019.

(17) 邀请报告, 大数据与现代统计国际研讨会, 上海, 中国, 2019.

(16) 邀请报告, 北京大学, 北京, 中国, 2019.

(15) 邀请报告, 中国现场统计研究会生存分析分会, 临汾, 中国, 2019.

(14) 邀请报告, 中国现场统计研究会高维数据统计分会第五届学术研讨会, 杭州, 中国, 2019.

(13) 邀请报告, ICSA Data Science, 西双版纳, 中国, 2019.

(12) 邀请报告, 第十届全国概率统计年会, 成都, 中国, 2018.

(11) 邀请报告, 统计学与数据科学青年学者论坛, 北京, 中国, 2018.

(10) 邀请报告, 有限混合模型及复杂模型, 桂林, 中国, 2018.

(9) 邀请报告, ICSA focus on data science, 青岛, 中国, 2018.

(8) 邀请报告, 南开大学--伯明翰大学联合讨论会, 南开大学, 中国, 2018.

(7) 邀请报告, 现代统计学研讨会, 厦门大学, 中国, 2017.

(6)邀请报告, 核心数学与组合数学教育部重点实验室汇报会, 南开大学, 中国, 2017.

(5) 邀请报告, 概率统计青年学者论坛, 南开大学, 中国, 2017.

(4) 邀请报告,2017 ICSA Applied Statistics Symposium,芝加哥,美国, 2017.

(3) 邀请报告及墙报展示,18th Meeting of New Researchers in Statistics and Probability会议,威斯康辛大学麦迪逊分校,美国, 2016.

(2)邀请报告,第三届全国概率统计青年学者会议,徐州,中国, 2013.

(1) 邀请报告,泛长三角应用统计学术年会,上海,中国, 2011.

相关话题/统计