删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安电子科技大学人工智能学院导师教师师资介绍简介-侯彪

本站小编 Free考研考试/2021-07-10


基本信息
侯彪 教授、博导/硕导
博士学科:
计算机科学与技术(081200)
控制科学与工程(081100)
硕士学科:
计算机科学与技术(081200)
控制科学与工程(081100)
电子信息(085400) 
工作单位:人工智能学院

联系方式
通信地址:陕西西安太白南路2号224信箱(710071)
电子邮箱:avcodec@163.com
办公电话:
办公地点:陕西西安太白南路2号西安电子科技大学主楼2区413室


个人简介
侯彪,华山********,博导/硕导,人工智能学院执行院长,智能感知与图像理解教育部重点实验室副主任,智能感知与计算国际联合研究中心副主任,智能遥感大数据解译研究中心主任,智能信息处理研究所副所长。IEEE会员,IET西安分会执行委员会委员,中国人工智能学会理事,中国人工智能学会智能科学专业委员会委员,西安市人工智能产业发展联盟副理事长,陕西智库联盟第一届理事会理事,中国电子学会高级会员,陕西省信号处理学会副理事长,陕西省自动化学会理事,中国航空学会信息融合分会委员,国际数字地球学会中国国家委员会微波遥感专业委员会委员,教育部创新团队成员,中国计算机学会会员。

主要研究方向
从事深度学习、遥感影像解译与目标识别、无人系统协同感知、视频图像分析等研究;获陕西省科学技术奖一等奖(2017)、教育部自然科学奖二等奖(2016),教育部新世纪优秀人才支持计划(2010),教育部自然科学奖一等奖(2009)、教育部技术发明奖二等奖(2011)、陕西省科学技术奖一等奖(2012),军队科技进步三等奖(2013),第十届陕西青年科技奖(2014),华为云AI名师奖(2020)。
西电AI微信公众号
西电遥感脑微信公众号




基本信息
侯彪 教授、博导/硕导
博士学科:
计算机科学与技术(081200)
控制科学与工程(081100)
硕士学科:
计算机科学与技术(081200)
控制科学与工程(081100)
电子信息(085400) 
工作单位:人工智能学院

联系方式
通信地址:陕西西安太白南路2号224信箱(710071)
电子邮箱:avcodec@163.com
办公电话:
办公地点:陕西西安太白南路2号西安电子科技大学主楼2区413室


个人简介
侯彪,华山********,博导/硕导,人工智能学院执行院长,智能感知与图像理解教育部重点实验室副主任,智能感知与计算国际联合研究中心副主任,智能遥感大数据解译研究中心主任,智能信息处理研究所副所长。IEEE会员,IET西安分会执行委员会委员,中国人工智能学会理事,中国人工智能学会智能科学专业委员会委员,西安市人工智能产业发展联盟副理事长,陕西智库联盟第一届理事会理事,中国电子学会高级会员,陕西省信号处理学会副理事长,陕西省自动化学会理事,中国航空学会信息融合分会委员,国际数字地球学会中国国家委员会微波遥感专业委员会委员,教育部创新团队成员,中国计算机学会会员。

主要研究方向
从事深度学习、遥感影像解译与目标识别、无人系统协同感知、视频图像分析等研究;获陕西省科学技术奖一等奖(2017)、教育部自然科学奖二等奖(2016),教育部新世纪优秀人才支持计划(2010),教育部自然科学奖一等奖(2009)、教育部技术发明奖二等奖(2011)、陕西省科学技术奖一等奖(2012),军队科技进步三等奖(2013),第十届陕西青年科技奖(2014),华为云AI名师奖(2020)。
西电AI微信公众号
西电遥感脑微信公众号




科研成果
一、视频图像建模、表示与学习
1.多尺度几何分析与图像稀疏表示
稀疏作为图像信号的先验特性,近年来得到了越来越多的关注和研究,而在众多信号处理的领域,稀疏表示也得到了更多的应用,为图像分析提供了有效的工具。传统方法通常处理的是二维图像,对于图像中的复杂结构,通常维数高,类型多,如何有效的表示这些高维奇异性,则成为目前国际研究的热点和难点问题。虽然传统的数据表示方法,如小波等,能有效表示图像,但存在高维奇异性逼近效率低、难以捕获复杂图像中方向信息等难点问题。
团队在国内较早开展了多尺度几何分析(Multiscale Geometric Analysis)研究,如小波(Wavelet),脊波(Ridgelet),曲线波(Curvelet),梳状波(Brushlet),轮廓波(Contourlet),楔形波(Wedgelet),子束波(Beamlet),条带波(Bandelet),方向波(Directionlet),剪切波(Shearlet)等等,利用函数的非线性逼近理论,在多尺度几何分析图像稀疏表示模型、图像高维奇异性感知与表达问题上取得了突破。针对图像的稀疏建模与表示问题,构造了各向异性的多尺度几何基函数,提出了相应的快速算法,为解决图像方向信息建模与分析提供了有效的理论和方法。针对图像高维奇异性感知与表达问题,提出了图像稀疏表示和特征提取的新方法,突破了复杂图像结构信息检测与提取的瓶颈。
图1 多尺度几何分析的方向基函数
原像 四视幅度图 非下采样Shearlet变换去噪
图2 Lena图像(四视幅度)乘性相干斑去噪结果
2.类脑感知、学习与认知
针对信息压缩的采样、表示学习与感知等基础理论,建立了类脑压缩表示学习与深度认知推理的框架;提出了基于半监督学习的联合稀疏恢复算法,实现了机器学习与稀疏优化理论的融合;提出了面向聚类任务的压缩采样学习与模糊稀疏子空间分割联合框架,缓解了高维空间内数据聚类复杂度高且可分性弱的核心瓶颈,从而降低了聚类误差;提出了基于生成式模型的分层结构化图像表示框架,通过对分层的隐变量利用结构稀疏与低秩先验建模,解决了数据域和特征域中类内差异成份与类间相似成份的表征问题,并能实现图像分类性能的显著提升;提出了非线性协同稀疏模型,解决了在合成稀疏模型中隐变量推断复杂度高且隐变量先验函数选择无法自适应于任务的问题,实现了任务驱动的先验正则函数快速判别式学习,并提高了隐变量推断与分类的效率。
图3 Scene-15图像库的分类精度为98.39%,AR人脸数据库的分类精度为99.43%
3.智能视频分析技术
智能视频分析技术是一种涉及图像处理、模式识别、人工智能等多个领域的智能分析技术。它能够对视频区域内出现的警戒区警戒线闯入、物品遗留或丢失、逆行、人群密度异常等异常情况进行分析,及时发出告警信息,并可根据对实时、历史视频的有效信息,对人、车、物、行为等进行结构化提取,并进行智能分析,实现特定目标的快速定位、查找、检测、识别、跟踪和检索。在工业生产现场、生活社区、安全要求敏感等场合,智能视频分析技术有重要应用价值,对维护国家及公共安全有现实意义。
团队结合视觉感知机理和脑认知机理,针对复杂环境因素造成现有成像设备得到的视频出现严重的失真或模糊现象,研究了视频图像的优化处理如去雾、去噪、去模糊、夜间增强、超分辨重建等技术。针对视频大数据应用中,异常事件监测及预警的自动化、智能化、实时化等需求,研究了基于深度学习的目标检测、目标识别、目标跟踪、姿态检测、人群密度检测等算法,设计实现了具有异常跟踪检测、跌倒检测、奔跑检测、违禁区域闯入检测、打架检测、人群密度预警等功能的智能视频分析系统,极大的减少了安防所需的人力物力,提升了异常事件的处理效率。
图4 视频去雾技术
图5 视频夜间增强技术
图6 视频监控智能分析系统(实现了行人和车辆等的异常行为检测,如奔跑、闯入、跟踪、摔倒等等)
二、空地协同无人系统与群体智能
无人机与无人车是集群系统中最具有代表性的两种对象,通过无人机与无人车的合理配合,可以弥补单一类型对象的不足,有效提升协同作业效能。无人机与无人车协同在智能交通、灾后救援及军事作战等多领域都具有广阔的应用前景,是异构机器人协同系统问题中的研究热点。通过多无人机与地面车辆的交互协同和信息融合,提供跨域感知能力,拓展地面侦察车辆信息获取的精度和维度,提升异构集群系统的态势感知效能。
团队研究了智能无人系统协同感知、认知和自主决策、群体智能学习理论与方法等、研究了自主避障、路径规划、目标检测与跟踪、高效定位与姿态估计等技术。建立了无人系统目标检测跟踪的深度学习方法,研制了视频图像目标检测跟踪系统,实现了无人机感知前端异常目标的检测识别、行为分析与事件检测,为任务决策提供智力辅助,提高决策水平,在无人机、无人驾驶、安防监控等领域具有广阔的前景。

图7 无人机实时视频目标识别与跟踪系统
图8 视频图像目标检测与跟踪系统
三、SAR图像理解与解译
1.SAR图像解译与目标识别
雷达的功能已从早期的目标探测(“千里眼”)演化为目标成像和目标解译。合成孔径雷达(SAR)技术从过去的单极化、单波段、固定入射角、单模式,已经迅速发展成为高分辨、多极化、多波段、多模式、多平台的成像雷达,同时干涉SAR、超宽带、多卫星群等技术也在不断涌现。这些大量新型SAR数据包含的信息越来越丰富,这些图像数据为目标检测和识别,及各种地面活动的监测提供了直接的手段。如何更为有效、全面的分析和利用这些数据集,实现高效的场景解译,从中发现规律,并寻找感兴趣的目标知识是当前SAR领域研究的关键问题。
团队利用视觉感知、语义分析、深度学习、类脑智能、压缩感知等,在SAR数据采样与重建、SAR图像地物识别与动态监测、SAR目标检测与识别上取得了突破。针对SAR数据采样与重建问题,构造了基于重采样机制的SAR数据获取方法,建立了基于多变量压缩感知的图像重建方法,为解决非整数Nyquist采样率和随机观测下的SAR数据恢复提供了有效的信号处理理论和方法。针对SAR图像地物识别与动态监测问题,提出了SAR图像特征提取、语义分类与分割的新方法,为发展SAR在水监测、土地利用监测、测绘等的应用提供了技术保障。针对SAR目标检测与识别问题,提出了机场、舰船等目标检测与识别的高效方法,推动了SAR图像解译、目标检测与识别技术的发展。
图9 SAR图像理解与解译系统
图10 SAR图像地物分类与变化检测系统
图11 基于ADSP-TS201的SAR图像并行处理系统
图12 基于深度学习的在轨SAR影像变化检测系统
2.提出了类脑成像方法
现有的SAR成像仅能对整个场景成像,无法直接获得感兴趣“目标成像”的结果。现有雷达体制中采样、成像与解译单纯自底向上的过程无法根据任务、场景、对象与环境自适应进行调整,这种弱自适应能力带来的缺乏应变性不仅将造成雷达系统在实际任务中的信息冗余与资源浪费,而且基于Nyquist高速采样会造成硬件成本提高,信息提取效率降低,不利于后续的目标识别。
团队针对高分辨SAR目标成像与识别,提出了语义先验学习模型的面向目标的类脑成像框架,突破了奈奎斯特采样的瓶颈,实现了在少量观测视角的低采样回波数据条件下,感兴趣目标增强与背景杂波抑制的类脑成像方法,相比传统以及压缩感知等主流SAR算法,大幅度地提高了目标杂波比同时缓解了数据获取与高速采样的压力。下图11给出了MSTAR目标的实验结果,该实验数据采用美国国防高等研究计划署(DARPA)支持的MSTAR计划所公布的实测SAR地面静止目标数据,传感器为高分辨聚束式合成孔径雷达,分辨率为0.3m×0.3m,X波段,HH极化方式。
图13 不同MSTAR目标的“场景成像”(每幅左边一列)和“类脑成像”(每幅右边一列)结果对比
3.类脑雷达系统及FPGA原理样机
目前雷达影像解译技术随着雷达的发展得到了广泛的研究,但对于核心算法和专用算法的研究目前较少,例如核心技术的DSP、FPGA、VLSI等的设计与实现,尤其是原理样机的研制,国内外还未见报道。如何和现有雷达系统有效的结合,通过应用异构多核数据处理技术,解决现有星载/机载/弹载计算机处理能力不足的问题,并设计适用的硬件支持平台成为雷达影像自动理解与解译实用化的一个关键问题。
团队针对雷达影像高维、非结构化、目标繁多信息混杂等问题,借鉴人类大脑的信息感知机制和认知机理,以及多尺度视觉感知模型,提出了感知-认知-强化为一体的类脑智能计算新理论与新方法,成功地采用友晶DE5-Net FPGA优化设计并研制了13层深度卷积神经网路的雷达图像目标识别技术,在高分辨雷达影像实时计算方面取得了突破性进展,研制成功类脑雷达系统及原理样机,实现了雷达从“千里眼”到“雷达脑”的转变。
图14 DE5-Net (Intel Stratix V GX FPGA)
图15 类脑SAR系统及FPGA原理样机
图16 MSTAR实测目标的检测与识别结果
图17 桥梁检测结果(该实验数据采用美国桑迪亚国家实验室(Sandia)的机载SAR数据,分辨率为1米,Ku波段)
4.深度学习VPX-GPU SAR图像解译系统
随着芯片技术的发展,采用GPU的系统也趋于小型化、可移动性,而SAR影像解译所需的大计算量,以及飞机、舰船等移动环境的需要,使得核心算法和专用算法的GPU方案设计也逐渐成为一个重要的分支。团队研发了面向SAR图像解译系统的深度学习VPX-GPU系统,该系统是深度学习处理机的VPX架构实现方案,采用NVIDIA Tesla M6 GPU 加速器,包含一片系统处理板和两片GPU加速处理板,实现了各种深度学习平台如:Caffe、TensorFlow、MXnet、Kares等的无缝移植。该系统采用稳固的VPX连接器方案,适合飞机、舰船等非静止状态的环境。
图18 深度学习VPX-GPU SAR图像解译系统
5.极化SAR地物分类和变化检测
相比于单极化SAR,极化SAR(Polarimetric SAR,PolSAR)一方面通过分析得到的全散射矩阵来推测地物目标的几何结构等细节特性以及地物目标的介电常数信息,另一方面通过选择合适的极化合成方式可以突出地物目标的分布区域,地物层次的变化。地物分类和变化检测是PolSAR图像理解与解译的一个重要任务之一,对于地质勘探,植被海洋监测与预警起了至关重要的作用。
团队针对当前极化SAR数据处理只关注极化散射特性,而没有考虑人类视觉感知特性的问题,利用视觉先验,将压缩感知理论和视觉注意理论相结合,提出高分辨极化SAR图像的稀疏模型与自适应学习字典构造方法,建立了极化SAR图像地物分类和变化检测。受大脑感知、学习表示与决策融合过程的启发,针对PolSAR不同模态的数据,构造了多模块的深层神经网络来感知不同模态下的特征表示,提高了极化SAR图像的分类效果。
图19 2008年4月, 荷兰Flevoland省Netherlands地区,50×25 Km范围, RADARSAT-2 C-Band模式拍摄,图像大小12944×2820, 分辨率10m×5m, 主要包含4类地物:森林、农田、水域和城区,分类正确率OA=98.3%
6.InSAR数据处理及解译
干涉SAR(InSAR)获取高精度地形图的问题就是干涉SAR的图像质量差。干涉SAR由于受阴影、顶底倒置、遮挡等因素的影响,即使在噪声抑制之后,SAR干涉图像的信噪比仍比较低,给相位展开带来了很大的困难。因此必须寻求提高干涉SAR图像质量的新技术。在单一基线干涉SAR中,由于信源较少,配准精度、相位展开精度等很难取得大的提高。近几年来,多基线干涉SAR技术倍受关注,它通过综合多基线获取的多元干涉信息获得高精度的地形高程。因此利用多基线干涉SAR数据处理来提高干涉SAR的测高精度成为未来干涉SAR数据处理的研究重点。并且在此基础上可以利用类似光学图像超分辨复原问题的线性病态模型,通过引入关于成像场景的先验信息,利用稀疏信号处理的方法来改善单基线干涉SAR数据质量,上述通过数据处理方法改善干涉SAR测量精度的方式由于硬件成本低、可行性好,因此对于干涉SAR的应用具有很大的现实意义。
团队基于稀疏表示理论,研究参数化模型的干涉SAR的超分辨理论和方法,利用稀疏学习方法提高干涉数据质量,在相位解缠的精确性、完整性和一致性要求的核心技术难题上取得突破,实现目标的高精度雷达干涉DEM重建。研究了基于干涉相干性的地物分类、基于高程信息的地物检测及分类、结合高程信息及纹理信息的地形解析/分类等等。
图20 InSAR处理系统
图21 DEM重建结果
图22 DEM重建图的纹理渲染结果
7.视频SAR运动目标检测、识别与跟踪
SAR地面运动目标检测和分析是利用SAR实现空间对地观测运用的一个主要方面,具有重要的战略作用。如何高效的检测出运动目标、确定目标运动参数及其位置并对运动目标成像是监视雷达的主要任务。无论在军事和民用方面,利用SAR进行地面运动目标检测和成像都具有重要意义,是目前研究的热点。国内外对基于单通道、多通道、分布式小卫星等的雷达系统的动目标的检测和成像方法进行了深入研究。VideoSAR(视频SAR)是美国Sandia实验室在2003年提出的新型成像模式,通过对场景连续的高分辨率成像,实现对地面的动态观测,可获得运动目标的相关信息,并进行跟踪。由于运动目标在雷达视线上的径向运动速度的存在,其多普勒频率和它所处的杂波单元的多普勒频率是不同的,使得运动目标在成像时发生偏移和散焦,给SAR运动目标的检测、识别与跟踪带来了困难。
团队针对VideoSAR的成像特点,以智能化目标识别和跟踪应用需求为牵引,重点开展VideoSAR视觉目标自学习理论、面向VideoSAR弱小目标的机器学习与认知方法、面向VideoSAR的类脑学习模型、星上计算资源受限的学习理论与硬件实现技术等,实现VideoSAR运动目标的关联识别,提高动目标检测、识别与跟踪算法的稳定性。
图23 VideoSAR运动目标跟踪结果(美国Sandia实验室)
三、遥感脑(Remote Sensing Brain, RSBrain)
遥感技术作为一种重要的对地观测技术,能够通过航空、航天传感器在不直接接触地物表面的情况下获取地物的信息。光学遥感影像是遥感技术的主要分支之一,具有“三高”的特点:(1)高空间分辨率,如QuickBird,IKONOS,中国高分系列遥感卫星;(2)高光谱分辨率,如Hyperion,AVIRIS和ROSIS;(3)高时间分辨率,如MODIS。光学遥感影像的这些特点为其广泛应用提供了可能。光学遥感器所获取的信息中最重要的特性有三个,即光谱特性,辐射度量特性和几何特性,这些特性确定了光学遥感器的性能。“三高”遥感影像的出现使得遥感影像处理难度越来越高,传统的遥感影像处理方法难以满足对遥感影像处理质量、效率的要求。课题组在多年研究基础上,建立了“遥感脑”,在遥感影像的感知、认知、推理、决策等方面建立了系统的类脑解译理论和方法。
1.可见光遥感图像解译
面向高分辨可见光遥感影像地物分类、目标检测、路网和水域提取、超分辨等,通过挖掘遥感影像特征,研究了遥感影像中乡村道路、城市道路和水域的自动提取,提出了城市道路提取的角度纹理特征匹配算法,乡村道路提取的多角度边界模板响应算法,以及水域边线提取的光谱特征相似度检测算法;针对传统大场景车辆检测效率低,定位误差偏大等问题,提出了光学图像和Lidar图像融合下的显著性车辆检测。针对目前已有的舰船检测在高分辨大场景下搜索速度慢,识别精度低等问题,提出了基于激光雷达和光学遥感图像融合的大场景舰船检测。针对遥感影像的数据量大、信息丰富便于利用的特点,搭建了高性能计算机集群,采用了最新的分布式高性能集群技术,建立了基于深度学习的目标检测与地物分类技术,研制了基于GPU和FPGA的遥感影像大数据类脑解译系统。
图24 光学图像和Lidar图像融合下的显著性车辆检测
图25 高分辨可见光遥感影像水系提取结果
图26 深度多示例学习的多源遥感图像分类,QuickBird 卫星图像,MS (左,2.64 m/pix),PAN (中,0.66 m/pix),和分类结果(右,OA=93.23%)
图27 基于稀疏表示和全局字典模型的自适应遥感图像超分辨
图28 基于GPU的遥感影像大数据类脑解译系统,实现了超过20层的深度CNN网络
图29 基于FPGA(Altera A10)的遥感影像大数据类脑解译系统
2.红外遥感图像解译
提出了基于参考辐射源与场景相结合的自适应非均匀性校正、基于边缘地物的自适应图像复原与补偿和基于直方图均衡化的自适应红外图像增强技术;针对目标的红外辐射特性和图像特征,提出了进行兴趣区检测的方法,降低背景干扰,提高目标探测概率,利用基于视觉注意机制和纹理分割实现兴趣区的检测;针对红外图像中目标的多描述特性,提出了一种基于多尺度几何分析、超完备字典稀疏编码和统计分析的红外图像目标特征提取方法;针对红外图像中目标易受噪声、遮挡的问题,提出了一种基于大规模稀疏核机器学习的快速目标识别分类方法;建立了红外图像解译系统,形成了相应的模型算法和软件组件。
图30 红外图像去噪技术
图31 基于图模型的红外图像分割技术
3.动态卫星视频解译
视频卫星通过一定时间间隔的时序图像组成视频,适于对动态目标进行分析,获得目标的速度和方向,这些重要信息从传统静态图像中难以获得。能够获取高空间分辨率对地观测动态视频,为国土资源监测、矿产资源开发、林业普查、环境保护、交通运输、防灾救灾等领域提供信息支持服务。“吉林一号”一箭四星于2015年10月7日成功发射,其中包括一颗光学遥感主星、一颗灵巧成像验证星、两颗灵巧成像视频星,开创了我国商业卫星应用领域多个第一。2017年1月9日,视频03星再次成功发射,共同组成了“吉林一号”卫星星座。2017年11月21日,我国在太原卫星发射中心用长征六号运载火箭以一箭三星方式,将吉林一号视频04、05、06星发射升空,吉林一号04、05、06星将与01、02、03星组网,为“军、政、民”三界提供了大量的数据服务。
团队针对动态卫星视频中飞机、舰船、车辆等机动目标存在外观变形、光照变化、快速运动和运动模糊、背景相似干扰等问题,以及平面外旋转、平面内旋转、尺度变化、遮挡、伪装和出视野等情况,研究了基于可变形深度卷积神经网络和均值漂移的动态卫星视频解译技术,实现了静/动态背景下的单/多目标的检测、识别、跟踪、三维重建等技术,在海洋监视、环境监视、动态军事目标检测等领域有广阔的应用前景。
图32 动态卫星视频
图33 基于卫星视频的三维建筑物重建
4.遥感图像语义标注
语义标注(Image Caption)是一个集成计算机视觉、自然语言处理和机器学习的挑战性问题,是从图片中自动生成一段描述性文字,即“看图说话”,也就是让计算机不仅要能检测出图像中的物体,而且要理解物体之间的相互关系,最后还要用合理的语言表达出来,并且生成人类可读的句子(自然语言描述)。如在图像检索领域,利用生成的自然语言描述,可快速实现图像内容检索。又如在基于遥感图像的自动情报生成领域,遥感图像语义标注不仅提供场景内容描述,而且能产生用于战场态势的情报信息。随着空天地各种成像传感器的发展,遥感图像理解与解译取得了显著进展,尤其是遥感图像目标检测分类与识别。但是,检测分类与识别仅仅是给出了目标属性(类型、国别等等),目标之间的关联、目标和地物之间的分布等等则无法得到。因此如何实现高效的遥感图像语义标注,成为提高遥感图像场景分析、高层语义抽取和情报生成效率的关键难题。
团队建立了基于CNN和LSTM的遥感图像语义标注方法,该方法有效的结合了CNN在特征提取和目标检测的优点,以及LSTM在语义合成的优势。首先通过对标签数据进行训练得到一个CNN模型,对输入的遥感图像,利用该模型得到多个候选区域并提取图像特征;然后通过该模型对候选区域识别获得背景和目标类别等信息;最后将结果经过Maxpooling得到图像的高层语义信息,最后输入到LSTM生成遥感图像语义描述。团队和陕西北斗金控信息服务有限公司合作,研发了基于高分1号、2号和3号等系列卫星遥感图像语义标注产品,在海量遥感图像检索和管理、大规模遥感图像分类等方面开展示范应用。
图34 遥感图像语义标注系统
四、大数据分析与挖掘技术
1.遥感领域的大规模知识图谱构建技术
我国多源航天航空遥感数据资源大概以每年50%以上的速度递增,并且非结构化数据已成为当前资源的主体,它是远比结构化数据广泛存在的数据形式。由于目前缺乏较好的大数据的分析工具和方法,而使大量隐藏在其中的有价值信息不能够及时被发现,这给遥感信息资源在各领域和各部门之间的交流与共享及有效的情报应用带来了极大地困扰。现有的数据/信息处理技术均难以满足当前这些多源大数据分析与预测的需求,目前我国关于非结构化大数据处理与应用的能力、效率与精度上仍然相当低下,与当前大数据处理的需求之间形成突出的矛盾。知识图谱技术能够将海量遥感大数据中的信息、数据以及连接关系汇聚为知识,实现用户智能化检索与意图推理。
团队针对多源遥感数据应用中的信息整合、系统集成、情报保障智能化、自动化需求,瞄准多源遥感信息快速关联、高效检索以及隐含关系发现等需求,突破基于多源遥感数据信息关联挖掘与结构化表达技术、多源遥感信息实体抽取、实体关系表达与构建、隐藏关系挖掘等关键技术,建立完备的遥感知识空间语义模型,构建具有强大互联能力的遥感领域大规模知识图谱,实现以地物、目标、情报和服务为主题中心的知识互联,提升多源遥感信息领域的知识获取与推理能力,形成遥感领域知识图谱的应用模式。同时,融合知识图谱与深度学习,利用蕴含于知识图谱中的知识指导深度神经网络模型的学习从而提升模型的性能,进一步提升深度学习模型在遥感领域的应用效果。
2.基于高分辨影像数据和北斗高精度位置数据的时空地理信息融合与服务技术
我国航天工业体系构建了门类齐全的通信、导航、遥感等卫星系统,形成了具有一定规模和广泛程度的军民应用体系。遥感应用已经向深度化、综合化方向发展,产业发展初具规模。通信卫星在轨的同步轨道商业卫星10颗,包括中星系列、亚太系列等,覆盖国家和地区包括中国、亚太、中东、澳大利亚、欧洲、非洲等地区。北斗卫星导航系统是我国自主建设、与世界其他卫星导航系统兼容共用的全球卫星导航系统。遥感卫星网为我们建立了一个多波段、多时相、多分辨率的“瞭望哨”,导航卫星为我们提供了实时的“指南针”,通讯卫星为我们提供了无处不在的、全实时“中继基站”服务。这些卫星系统提供了完备的时间、位置、影像和地理信息,可基于其提供的环境信息进行分析判断并应用于各种服务,现代信息化社会的发展对开展通信、导航、遥感更提出了更高的要求。
团队针对多源遥感信息反映地物和目标复杂、不确定的特征,基于类脑计算和云计算,利用视觉系统的分层感知结构和脑的深度结构,通过知识推理模型融合高分辨率影像数据和北斗高精度位置数据的时空地理信息,建立具有深度层次结构的多源异质数据协同认知模型,在基于位置服务的大数据应用开发方面取得突破性进展。团队和陕西北斗金控信息服务有限公司长期合作,研发了基于位置服务的国家需求的信息化服务产品,推进北斗导航服务模式和产品创新,在重点区域和交通、减灾、应急、反恐、农林等重点领域开展示范应用。
图35 基于高分辨影像数据和北斗高精度位置数据的城市绿地分布统计

支撑项目
1. 教育部人工智能算法战略研究项目,脑启发机制的人工智能模型与算法规划研究,2020/01-2021/12
2. 国家自然科学基金面上项目,**,基于脑启发的PolSAR图像深层协同表示学习与分类,2017/01-2020/12
3. 部委项目,基于人工智能的图像处理和舰船目标识别技术,2017/06-2020/12
4. 国家自然科学基金重大研究计划,**,稀疏认知下的遥感影像在轨变化检测与目标提取,2015/01-2018/12
5. 陕西省重点科技创新团队,D**,智能感知与图像理解,2013/08-2016/8
6. 陕西省科技统筹创新工程计划项目,2015TZC-G-6-7,高分辨率SAR图像协同认知关键技术及软件系统,2015/01-2016/12
7. 国家“973”计划项目子课题,2013CB329402,非结构化环境的协同感知与高效目标相关信息获取, 2013/01-2017/12
8. 教育部博士点基金,20**9,基于压缩感知和视觉先验学习的极化SAR图像识别与分类,2013/01-2015/12
9. 国家自然科学基金面上项目,**,基于视觉先验学习和混合因子分析的极化SAR图像识别与分类,2013/01-2016/12
10. 教育部新世纪优秀人才支持计划,NCET-10-0666,多尺度几何SAR遮挡目标检测与识别,2011/01-2013/12
11. 国家自然科学基金面上项目,**,基于Sparse-Land模型的SAR图像噪声抑制与分割,2010/01-2012/12
12. “863”计划,2007AA12Z136,多尺度几何SAR影像智能信息提取与目标识别,2008/01-2009/12
13. 国家“973”计划项目子课题,2007CB705707,基于机器学习的医学影像处理与分析,2008/01-2011/12
14. 高等学校科技创新工程重大项目培育项目,706053,高分辨信息感知、获取、处理和传输技术研究,2007/01-2008/12
15. 国家自然科学基金面上项目,**,基于Contourlet的图像奇异性检测,2005/01-2007/12




专著
焦李成,李阳阳,侯彪,石光明. 人工智能学院本硕博培养体系.清华大学出版社, 2019.
焦李成,侯彪等. 人工智能、类脑计算与图像解译前沿. 西安电子科技大学出版社,2019.
田小林,孙其功,焦李成,侯彪. 人工智能创新室验教程. 西安电子科技大学出版社,2019.
孙其功,邬刚, 田小林, 陈永, 侯彪等. 深度神经网络FPGA设计与实现. 西安电子科技大学出版社,2019.
焦李成,刘芳, 李玲玲, 杨淑媛,侯彪等. 遥感影像深度学习智能解译与识别. 西安电子科技大学出版社,2019.
焦李成,侯彪等.雷达图像解译技术.国防工业出版社, 2017.
焦李成,侯彪等. 智能SAR影像变化检测. 科学出版社, 2017
焦李成,尚荣华, 刘芳, 杨淑媛, 侯彪等. 稀疏学习、分类与识别. 科学出版社, 2017
焦李成,尚荣华, 刘芳, 杨淑媛, 侯彪等. 认知计算与多目标优化. 科学出版社, 2017
焦李成,侯彪等.图像多尺度几何分析理论与应用. 西安电子科技大学出版社, 2008
焦李成,张向荣,侯彪等. 智能SAR图像处理与解译. 科学出版社, 2008
焦李成,公茂果,王爽,侯彪等. 自然计算、机器学习与图像理解前沿. 西安电子科技大学出版社, 2008

期刊论文
Xianpeng Guo, Biao Hou, Bo Ren, Zhongle Ren, Licheng Jiao. Network Pruning for Remote Sensing Images Classification Based on Interpretable CNNs. IEEE Transactions on Geoscience and Remote Sensing, 2021, DOI: 10.1109/TGRS.2021.**.
Xu Liu, Lingling Li, Fang Liu, Biao Hou, Shuyuan Yang, Licheng Jiao. GAFnet: Group Attention Fusion Network for PAN and MS Image High-Resolution Classification. IEEE Transactions on Cybernetics, 2021, DOI:10.1109/TCYB.2021.**.
Licheng Jiao, Ruohan Zhang, Fang Liu, Shuyuan Yang, Biao Hou, Lingling Li, Xu Tang. New Generation Deep Learning for Video Object Detection: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 2021, DOI:10.1109/TNNLS.2021.**.
Meijuan Yang, Licheng Jiao, Fang Liu, Biao Hou, Shuyuan Yang, Meng Jiang. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. IEEE Transactions on Neural Networks and Learning Systems, 2021, DOI:10.1109/TNNLS.2021.**.
Wenping Ma, Jianchao Shen, Hao Zhu, Jun Zhang, Jiliang Zhao, Biao Hou, Licheng Jiao. A Novel Adaptive Hybrid Fusion Network for Multiresolution Remote Sensing Images Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, DOI: 10.1109/TGRS.2021.**.
Dou Quan, Shuang Wang, Ning Huyan, Jocelyn Chanussot, Ruojing Wang, Xuefeng Liang, Biao Hou,Licheng Jiao. Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching. IEEE Transactions on Neural Networks and Learning Systems, 2021, DOI:10.1109/TNNLS.2021.**.
Bo Ren, Yangyang Zhao, Biao Hou, Jocelyn Chanussot, Licheng Jiao. A Mutual Information-Based Self-Supervised Learning Model for PolSAR Land Cover Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, DOI: 10.1109/TGRS.2020.**.
Wenping Ma, Jiliang Zhao, Hao Zhu, Jianchao Shen, Licheng Jiao, Yue Wu, Biao Hou.A Spatial-Channel Collaborative Attention Network for Enhancement of Multiresolution Classification. Remote Sensing,2021, 13(1): 106.
Hao Zhu, Mengru Ma, Wenping Ma, Licheng Jiao, Shikuan Hong, Jianchao Shena, Biao Hou.A spatial-channel progressive fusion ResNet for remote sensing classification. Information Fusion,2021,70: 72-87.
Qian Wu, Biao Hou, Zaidao Wen, Zhongle Ren, Licheng Jiao. Cost-sensitive Latent Space Learning for Imbalanced PolSAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4802-4817.
Zitong Wu, Biao Hou, Licheng Jiao. Multiscale CNN With Autoencoder Regularization Joint Contextual Attention Network for SAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1200-1213.
Xu Liu, Licheng Jiao, Lingling Li, Lin Cheng,Fang Liu, Shuyuan Yang,Biao Hou. Deep Multiview Union Learning Network for Multisource Image Classification. IEEE Transactions on Cybernetics, 2020, DOI: 10.1109/TCYB.2020.**.
Meijuan Yang, Licheng Jiao,Biao Hou, Fang Liu, Shuyuan Yang. Selective Adversarial Adaptation-Based Cross-Scene Change Detection Framework in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2020, DOI: 10.1109/TGRS.2020.**.
Biao Hou, Zhongle Ren, Wei Zhao, Qian Wu, Licheng Jiao. Object Detection in High-resolution Panchromatic Images Using Deep Models and Spatial Template Matching. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 956-970.
Shuang Wang, Yanhe Guo, Wenqiang Hua, Xinan Liu, Guoxin Song, Biao Hou, Licheng Jiao. Semi-Supervised PolSAR Image Classification Based on Improved Tri-Training With a Minimum Spanning Tree.IEEE Transactions on Geoscience and Remote Sensing, 2020,DOI: 10.1109/TGRS.2020.**.
Bo Ren, Biao Hou, Jocelyn Chanussot, Licheng Jiao. PolSAR Feature Extraction via Tensor Embedding Framework for Land Cover Classification. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(4): 2337-2351.
Jianlong Wang, Biao Hou,Licheng Jiao, Shuang Wang. POL-SAR Image Classification Based on Modified Stacked Autoencoder Network and Data Distribution. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(3): 1678-1695.
Hao Zhu, Wenping Ma, Lingling Li, Licheng Jiao, Shuyuan Yang, Biao Hou. A Dual-Branch Attention fusion deep network for multiresolution remote-Sensing image classification. InformationFusion, 2020, 58: 116-131.
Hongying Liu, Ruyi Luo, Fanhua Shang, Xuechun Meng, Shuiping Gou, Biao Hou.Semi-Supervised Deep Metric Learning Networks for Classification of Polarimetric SAR Data. Remote Sensing,2020, 12(10): 1593.
Qian Wu, Biao Hou,Zaidao Wen, Zhongle Ren, Bo Ren, Licheng Jiao. Structure Label Matrix Completion for PolSAR Image Classification. Remote Sensing, 2020,12(3) : 459.
Bo Ren, Biao Hou, Jocelyn Chanussot, Licheng Jiao. Modified Tensor Distance-Based Multiview Spectral Embedding for PolSAR Land Cover Classification. IEEE Geoscience and Remote Sensing Letters, 2020.
Hao Zhu, Wenping Ma, Lingling Li, Licheng Jiao, Shuyuan Yang, Biao Hou. A Dual–Branch Attention fusion deep network for multiresolution remote–Sensing image classification. Information Fusion, 2020, 58: 116-131.
Zhongle Ren, Biao Hou, Qian Wu, Zaidao Wen, Licheng Jiao.A Distribution and Structure Match Generative Adversarial Network for SAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):3864-3880.
Biao Hou, Jiaojiao Guan, Qian Wu, Licheng Jiao. Semisupervised Classification of PolSAR Image Incorporating Labels\\\' Semantic Priors. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1737-1741.
Qian Wu, Biao Hou, Zaidao Wen, Licheng Jiao. Variational Learning of Mixture Wishart Model for PolSAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 141-154.
Chen Yang, Biao Hou, Bo Ren, Yue Hu, Licheng Jiao. CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing,2019, 57(11): 8796-8812.
Hongying Liu, Feixiang Wang, Shuyuan Yang, Biao Hou, Licheng Jiao, Ri Yang. Fast Semisupervised Classification Using Histogram-Based Density Estimation for Large-Scale Polarimetric SAR Data. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1844-1848.
Yiguo Qiao, Licheng Jiao, Shuyuan Yang, Biao Hou. A Novel Segmentation Based Depth Map Up-Sampling. IEEE Transactions on Multimedia, 2019, 21(1):1-14.
Wei Zhao, Wenping Ma, Licheng Jiao, Puhua Chen, Shuyuan Yang, Biao Hou. Multi-Scale Image Block-Level F-CNN for Remote Sensing Images Object Detection. IEEE Access, 2019, 7: 43607-43621.
Biao Hou, Lanqi Wang, Qian Wu, Qingsen Han, Licheng Jiao. Complex Gaussian–Bayesian Online Dictionary Learning for SAR Target Recognition with Limited Labeled Samples. IEEE Access, 2019,7: 120626-120637.
Yiguo Qiao, Licheng Jiao, Shuyuan Yang, Biao Hou, Jie Feng. Color Correction and Depth-Based Hierarchical Hole Filling in Free Viewpoint Generation. IEEE Transactions on Broadcasting, 2019, 65(2):294-307.
Meijuan Yang, Licheng Jiao, Fang Liu, Biao Hou, Shuyuan Yang. Transferred Deep Learning-Based Change Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6960-6973.
Fang Liu, Licheng Jiao, Xu Tang, Shuyuan Yang, Wenping Ma, Biao Hou. Local Restricted Convolutional Neural Network for Change Detection in Polarimetric SAR Images. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 818-833.
Huan Chen, Licheng Jiao, Miaomiao Liang, Fang Liu, Shuyuan Yang, Biao Hou. Fast unsupervised deep fusion network for change detection of multitemporal SAR images. Neurocomputing, 2019, 332: 56-70.
Biao Hou, Jianlong Wang, Licheng Jiao, Shuang Wang. Auto Encoder Feature Learning with Utilization of Local Spatial Information and Data Distribution for Classification of PolSAR Image. Remote Sensing, 2019, 11(11): 1313.
Wenping Ma, Hui Yang, Yue Wu, Yunta Xiong, Tao Hu, Licheng Jiao, Biao Hou. Change Detection Based on Multi-Grained Cascade Forest and Multi-Scale Fusion for SAR Images. Remote Sensing, 2019, 11(2): 142.
Zaidao Wen, Biao Hou, Qian Wu, Licheng Jiao. Discriminative Feature Learning for Real-Time SAR Automatic Target Recognition With the Nonlinear Analysis Cosparse Model. IEEE Geoscience Remote Sensing Letters, 2018, 15(7): 1045-1049.
Qian Wu, Biao Hou, Zaidao Wen, Licheng Jiao. Variational Learning of Mixture Wishart Model for PolSAR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2018, DOI:10.1109/TGRS.2018.**.
Ronghua Shang, Jiaming Wang, Licheng Jiao, RustamStolkin, Biao Hou, Yangyang Li. SAR Targets Classification Based on Deep Memory Convolution Neural Networks and Transfer Parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2834-2846.
Miaomiao Liang, Licheng Jiao, Shuyuan Yang, Fang Liu, Biao Hou, Huan Chen. Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2911-2924.
Dan Zhang, Licheng Jiao, Xue Bai, Shuang Wang, Biao Hou. A robust semi-supervised SVM via ensemble learning. Applied Soft Computing. 2018, 65: 632-643.
YiguoQiao, Licheng Jiao, Shuyuan Yang, Biao Hou. A Novel Segmentation based Depth Map Upsampling. IEEE Transactions on Multimedia, 2018, DOI:10.1109/TMM.2018.**.
Fang Liu, Licheng Jiao, Xu Tang, Shuyuan Yang, Wenping Ma, Biao Hou. Local Restricted Convolutional Neural Network for Change Detection in Polarimetric SAR Images. IEEE Transactions on Neural Networks and Learning Systems, 2018, DOI:10.1109/TNNLS.2018.**.
Huifang Shen, Biao Hou, Zaidao Wen, Licheng Jiao. Structural-Correlated Self-Examples Based Superresolution of Single Remote Sensing Image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3209-322.
Zhongle Ren, Biao Hou, Zaidao Wen, Licheng Jiao. Patch-Sorted Deep Feature Learning for High Resolution SAR Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3113-3126.
Biao Hou, Chen Yang, Bo Ren, Licheng Jiao. Decomposition-Feature-Iterative-Clustering-Based Superpixel Segmentation for PolSARImage Classification. IEEE Geoscience Remote Sensing Letters, 2018, 15(8): 1239-1243.
Bo Ren, Biao Hou, Jin Zhao, Licheng Jiao. Sparse Subspace Clustering-Based Feature Extraction for PolSAR Imagery Classification. Remote Sensing, 2018, 10(3), 391.
Yiguo Qiao, Licheng Jiao, Biao Hou. High-quality depth up-sampling based on multi-scale SLIC. Electronics Letters. 2018, 54(8): 494-496.
Biao Hou, Kang Zhou, Licheng Jiao. Adaptive Super-Resolution for Remote Sensing Images Based on Sparse Representation With Global Joint Dictionary Model. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2312 - 2327.
Biao Hou, Zaidao Wen, Licheng Jiao, Qian Wu. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1922 - 1939.
Biao Hou, Qian Wu, Zaidao Wen, Licheng Jiao. Robust Semisupervised Classification for PolSAR Image With Noisy Labels. IEEE Transactions on Geoscience and Remote Sensing. 2017, 55(11): 6440 - 6455
Zaidao Wen, Biao Hou, Qian Wu, Licheng Jiao, Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering. IEEE Transactions On Cybernetics, 48(8): 2218-2231.
Wen Xie, Licheng Jiao, Biao Hou, Wenping Ma, Jin Zhao, Shuyin Zhang, Fang Liu. POLSAR Image Classification via Wishart-AE Model or Wishart-CAE Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3604-3615.
Zaidao Wen, Biao Hou, Licheng Jiao. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification. IEEE Transactions on Image Processing.2017, 26(7): 3449 - 3462
Biao Hou, Guang Zhang, Zhenwei Li, Licheng Jiao. Sparse Coding-Inspired High-Resolution ISAR Imaging Using Multistage Compressive Sensing. IEEE Transactions on Aerospace and Electronic Systems. 2017, 53(1): 26 – 40.
Zaidao Wen, Biao Hou, Licheng Jiao. Joint Sparse Recovery With Semisupervised MUSIC. IEEE Signal Processing Letters. 2017, 24(5): 629 – 633.
Yaoguo Zheng,Licheng Jiao,Hongying Liu,Xiangrong Zhang,Biao Hou, Shuang Wang. Unsupervised saliency-guided SAR image change detection.Pattern Recognition, 2017, 61:309-326.
Bo Ren, Biao Hou, Jin Zhao, Licheng Jiao. Unsupervised Classification of Polarimetirc SAR Image Via Improved Manifold Regularized Low-Rank Representation With Multiple Features. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 580 – 595.
Zaidao Wen, Biao Hou, Licheng Jiao. Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification.IEEE Transactions on Cybernetics, 2017,47(11):3758-3771
Ronghua Shang, Yijing Yuan, Licheng Jiao, Biao Hou. Amir Masoud Ghalamzan Esfahani; Rustam Stolkin, A Fast Algorithm for SAR Image Segmentation Based on Key Pixels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,Year: 2017, 10(12): 5657 - 5673
Shuyin Zhang, Biao Hou, Licheng Jiao, Qian Wu, Chen Sun, Wen Xie. Context-Based Max-Margin for PolSAR Image Classification. IEEE Access, 2017,5, 24070 – 24077
Biao Hou, Hongda Kou, Licheng Jiao, Classification of Polarimetric SAR Images Using Multil[ant]ayer Autoencoders and Superpixels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), July 2016.
Biao Hou, Bo Ren, Guilin Ju, Huiyan Li, Licheng Jiao, Jin Zhao. SAR Image Classification via Hierarchical Sparse Representation and Multisize Feature, IEEE Geoscience Remote Sensing Letters, 13(1), January 2016.
Fang Liu, Licheng Jiao, Biao Hou, Shuyuan Yang. POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information, IEEE Transaction on Geoscience Remote Sensing, 54(6), June 2016.
Shang Ronghua, Tian P, Jiao Licheng, Rustam Stolkin, Jie Feng, Biao Hou, Xiangrong Zhang. A Spatial Fuzzy Clustering Algorithm With Kernel Metric Based on Immune Clone for SAR Image Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1640-1652.
Gu Jing, Jiao Licheng, Yang Shuyuan, Fang Liu, Biao Hou, Zhiqiang Zhao. A Multi-kernel Joint Sparse Graph for SAR Image Segmentation.. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1265-1285.
Yaoguo Zheng,Licheng Jiao,Ronghua Shang,Biao Hou,Xiangrong Zhang. Local Collaborative Representation With Adaptive Dictionary Selection for Hyperspectral Image Classification. IEEE Geoscience Remote Sensing Letters,2016, 13(10):1482-1486.
Erlei Zhang,Xiangrong Zhang,Licheng Jiao,Hongying Liu,Shuang Wang,Biao Hou. Weighted multifeature hyperspectral image classification via kernel joint sparse representation.Neurocomputing, 2016, 178:71-86.
Zhiqiang Zhao,Licheng Jiao,Biao Hou,Shuang Wang,Jiaqi Zhao,Puhua Chen. Locality-constraint discriminant feature learning for high-resolution SAR image classification.Neurocomputing, 2016, 207:772-784.
Hao Zhu,Wenping Ma,Biao Hou,Licheng Jiao. SAR Image Registration Based on Multifeature Detection and Arborescence Network Matching. IEEE Geoscience Remote Sensing Letters, 2016, 13(5): 706-710.
Erlei Zhang,Xiangrong Zhang,Licheng Jiao,Lin Li,Biao Hou. Spectral-spatial hyperspectral image ensemble classification via joint sparse representation.Pattern Recognition2016, 59:42-54.
Jianing Wang, Licheng Jiao, Shuang Wang, Biao Hou. Fang Liu. Adaptive Nonlocal Spatial–Spectral Kernel for Hyperspectral Imagery Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4086 – 4101.
Hongying Liu, Dexiang Zhu, Shuyuan Yang, Biao Hou, Shuiping Gou, Tao Xiong, Licheng Jiao. Semisupervised Feature Extraction With Neighborhood Constraints for Polarimetric SAR Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3001 – 3015.
Biao Hou, Chao Chen, Xiaojuan Liu. Multilevel Distribution Coding Model Based Dictionary Learning for PolSAR Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5262 – 5280
Liu Fang, Lin Leping, Jiao Licheng, Lingling Li, Shuyuan Yang, Biao Hou, Hongmei Ma, Li Yang, Jinghuan Xu. Nonconvex compressed sensing by nature-inspired optimization algorithms. IEEE Transaction on cybernetics, 2015, 45(5): 1042-1053.
Biao Hou, Taimin Huang, Licheng Jiao. Spectral-Spatial Classification of Hyperspectral Data Using 3D-Morphological Profile. IEEE Geosci. Remote Sens. Lett., 2015, 12(2): 2364 - 2368.
Biao Hou, Xingzhong Chen, Licheng Jiao, Multil[ant]ayer CFAR Detection of Ship Targets in Very High Resolution SAR Images, IEEE Geoscience Remote Sensing Letters, 12(4):811-815, Apr. 2015.
Licheng Jiao, Xu Tang, Biao Hou, Shuang Wang. SAR images retrieval based on semantic classification and region-based similarity measure for earth observation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3876-3891.
Tao Xiong, Shuang Wang, Biao Hou, Yong Wang, Hongying Liu . A Resample-Based SVA Algorithm for Sidelobe Reduction of SAR/ISAR Imagery With Noninteger Nyquist Sampling Rate. IEEE Transaction on Geoscience Remote Sensing, 2015, 53(2): 1016-1028.
Biao Hou, Qian Wei, Yaoguo Zheng, Shuang Wang. Unsupervised Change Detection in SAR Image Based on Gauss-Log Ratio Image Fusion and Compressed Projection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3297-3317
Yan Ren, Shuang Wang, Biao Hou, Jingjing Ma. A Novel Eye Localization Method with Rotation Invariance. IEEE Transaction on Image Processing, 2014, 23(1): 226-239.
Yaoguo Zheng, Xiangrong Zhang, Biao Hou, Ganchao Liu. Using Combined Difference Image and k-Means Clustering for SAR Image Change Detection. IEEE Geoscience Remote Sensing Letters, 2014, 11(3):691-695.
Biao Hou, Xiangrong Zhang, Qiang Ye, Yaoguo Zheng. A Novel Method for Hyperspectral Image Classification Based on Laplacian Eigenmap Pixels Distribution-Flow. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1602-1618
Hang Yu, Xiangrong Zhang, Shuang Wang, Biao Hou. Context-Based Hierarchical Unequal Merging for SAR Image Segmentation.. IEEE Transactions on Geoscience and Remote Sensing, 2013, 99:1-15.
H. L. Wan, C. Jung, Biao Hou, G. T. Wang, Q. X. Tang. Novel Change Detection in SAR Imagery Using Local Connectivity. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1):174-178.
Fei Yin, L. C. Jiao, Fanhua Shang, Shuang Wang, Biao Hou. Fast Fisher Sparsity Preserving Projections. Neural Computing and Applications 2013, 23(3-4): 691-705
Biao Hou, Xiaohua Zhang, Xiaoming Bu, Hongxiao Feng. SAR Image Despeckling Based on Nonsubsampled Shearlet Transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3):809-823.
Biao Hou, Xiangrong Zhang, Nan Li. MPM SAR Image Segmentation Using Feature Extraction and Context Model. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6):1041-1045.
Hongxiao Feng, Biao Hou, Maoguo Gong. SAR Image Despeckling Based on Local Homogeneous Region Segmentation by Using Pixel Relativity Measurement. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 1-14.
Licheng Jiao, Lei Wang, Jiaji Wu, Jing Bai, Shuang Wang, Biao Hou. Reversible Integer Lapped Transform for Lossy-to-Lossless ROI Coding of Remote Sensing Two-Dimensional Images, IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 326-330.
J. Wu, F. Liu, L. Jiao, X. Wang, B. Hou, Multivariate Compressive Sensing for Image Reconstruction in the Wavelet Domain: Using Scale Mixture Models, IEEE Trans on Image Processing, 2011, 20(12): 3483-3494.
张向荣,于心源,唐旭,侯彪,焦李成. 基于马尔科夫判别谱聚类的极化SAR图像分类方法. 雷达学报,2019,4:425-435.
张姝茵,侯彪,焦李成,吴倩. 基于稀疏自编码器和边缘保持的Wishart马尔科夫随机场的极化SAR图像分类. 红外与毫米波学报,2018,2:177-183.
朱虎明,李佩,焦李成,杨淑媛,侯彪. 深度神经网络并行化研究综述. 计算机学报,2018,8:1861-1881.
张姝茵,侯彪. 高概率选择和自适应MRF的极化SAR分类. 西安电子科技大学学报, 2017,6: 59-64.
滑文强 , 王爽 , 侯彪. 基于半监督学习的SVM-Wishart极化SAR图像分类方法. 雷达学报,2015,4(1):93-96. (2015年度雷达学报高被引论文
王爽,于佳平,刘坤,侯彪,焦李成. 基于双边滤波的极化SAR 相干斑抑制. 雷达学报,2014,3(1):65-68.
焦李成, 杨淑媛, 刘芳, 侯彪. 压缩感知回顾与展望.电子学报,2011, 20(7):1651-1662.
侯彪, 胡育辉, 焦李成. SAR图像水域的改进Shearlet边缘检测. 中国图象图形学报. 2010,15(10):1549-1554.
侯彪,翟艳霞,焦李成. 用于SAR图像分割的第二代Bandelet域HMT-3S模型. 红外与毫米波学报.2010,29(2):145-149.
凤宏晓, 焦李成, 侯彪. 基于局部平移瑞利分布模型的SAR图像相干斑抑制. 电子与信息学报. 2010, 32(4):925-931.
凤宏晓, 侯 彪, 焦李成, 卜晓明. 基于非下采样Contourlet域局部高斯模型和MAP的SAR图像相干斑抑制. 电子学报. 2010, 38(4):811-816.
侯彪,刘凤,焦李成,包慧东. 基于小波域隐马尔科夫树模型的图像分割. 红外与毫米波学报,2009,28(2):156-160.
侯彪,徐婧,刘凤,焦李成. 基于第二代Bandelet域隐马尔科夫树模型的图像分割.自动化学报,2009,35(5):498-504.
侯彪,刘凤,焦李成,包慧东. 基于自适应窗口固定及传播的多尺度纹理图像分割. 电子学报,2009,37(7):1492-1500.
侯彪,刘佩,焦李成. 基于改进Wedgelet变换的SAR图像边缘检测. 红外与毫米波学报. 2009,28(5): 396-400.
凤宏晓,侯彪,王爽,焦李成. 基于自适应窗和形状自适应小波变换的SAR图像相干斑抑制. 红外与毫米波学报. 2009,28(3):212-217.
白静,侯彪,王爽,焦李成,基于提升Directionlet域高斯混合尺度模型SAR图像噪声抑制,计算机学报,2008,31(7):1234-1241.
Xiangrong Zhang, Biao Hou, Licheng Jiao, Feature Selection for SVMs Ensemble, Journal of Computational Information System, 2006, 2(4): 1385-1390.
侯彪,刘芳,焦李成. 基于脊波变换的直线特征检测.中国科学E辑.2003, 33(1): 65-73
侯彪,刘芳,焦李成,基于小波变换的高分辨SAR港口目标自动分割. 红外与毫米波学报. 2002, 21(5): 385-389

会议论文
Xiangrong Zhang, Xiang Li, Jinliang An, Li Gao, Biao Hou, Chen Li, Natural language description of remote sensing imags based on deep learning. IGARSS2017: 4798-4801.
Biao Hou, Xiaohua Zhang, Dezhao Gong, Shuang Wang, Xiangrong Zhang, Licheng Jiao, Fast Graph-Based Sar Image Segmentation Via Simple Superpixels. IGARSS 2017:799-802.
Biao Hou, Yuheng Jiang, Bo Ren, Zaidao Wen, Shuang Wang, and Licheng Jiao, Unsupervised Polsar Image Classification Using Boundary-Preserving Region Division And Region-Based Affinity Propagation Clustering. IGARSS, 2016:5103-5106.
Zaidao Wen, Biao Hou, Shuang Wang, and Licheng Jiao. Learning Task-Driven Polarimetric Target Decomposition: A New Perspective. IGARSS 2016:4761-4764.
Hongying Liu, Qiang Min, Chen Sun, Jin Zhao, Shuyuan Yang, Biao Hou, Jie Feng, and Licheng Jiao. Terrain Classification With Polarimetric SAR Based on Deep Sparse Filtering Network,IGRASS 2016:64-67.
Hongying Liu, Xing Xing, Shigang Wang, Zhixi Feng, Erlei Zhang, Shuyuan Yang, Biao Hou, and Licheng Jiao. Fast Semi–Supervised Classification Based on Parallel Auction Graph for Polarimetric SAR Data. IGRASS 2016:1528-1531.
Xiangrong Zhang, Zeyu Gao, Jinliang An, Yanning Hu, Yangyang Li, Biao Hou. Joint Multi-Feature Hyperspectral Image Classification with Spatial Constraint in Semantic Manifold. IGRASS 2016:481-484.
Biao Hou ,Xiaohuan Luo,Shuang Wang,Licheng Jiao,and Xiangrong Zhang. Polarimetric SAR images Classification Using Deep Belief Networks with Learning Features. IGARSS, 2015:2366-2369.
Yanhe Guo, Shuang Wang, Chenqiong Gao, Danrong Shi, Donghui Zhang, and Biao Hou. Wishart RBM based DBN for polarimetric synthetic radar data classification. IGARSS 2015: 1841-1844.
Hongying Liu, Yikai Wang, Dexiang Zhu, Shuyuan Yang, Shuang Wang, Biao Hou, and Licheng Jiao. Semi-supervised classification based on anchor-spatial graph for large polarimetric SAR data. IGARSS 2015: 1845-1848.
Xiangrong Zhang, Cai Cheng, Jinliang An, Yaoguo Zheng, Erlei Zhang, and Biao Hou. Sparsity-constrained generalized bilinear model for hyperspectral unmixing. IGARSS 2015: 5055-5058.
Biao Hou, Na Li, Shuang Wang, and Xiangrong Zhang. SAR image segmentation based on random projection and signature frame. IGARSS, 2014:3726 - 3729.
Xiaojin Hou, Lin Yan, Shuang Wang, Biao Hou. MSTAR image segmentation with multi-phase level set based on probability density model. IGARSS 2014: 1721-1724.

获批专利
侯彪,焦李成,张华,王爽,马晶晶,马文萍,冯婕,张小华. 结合LBP特征图与卷积神经网络的人脸识别方法.专利号:ZL3.6,授权时间:2020.04.07.
侯彪,王蓝琦,焦李成,马文萍,马晶晶,杨淑媛. 基于稀疏表示和高斯分布的SAR图像分类方法. 专利号:ZL9.4,授权时间:2020.05.05.
侯彪,任仲乐,吴倩,焦李成,马晶晶,马文萍,王爽,白静. 基于分布和结构匹配生成对抗网络的SAR图像地物分类方法. 专利号:ZL20**,授权时间:2020.05.29.
侯彪,焦李成,种毫,马晶晶,马文萍,白静. 一种基于FPGA异构计算的桥梁检测方法. 专利号:ZL7X,授权时间:2020.09.29.
侯彪,焦李成,李琳,马晶晶,马文萍,白静. 基于强度比和空间结构特征提取的高分辨SAR图像分类方法. 专利号:ZL20**,授权时间:2020.11.03.
侯彪,焦李成,杨晨,马晶晶,马文萍,王爽,白静. 基于DFIC超像素的PolSAR图像地物分类方法.专利号:ZL0.5,授权时间:2020.04.07.
侯彪,焦李成,张华,王爽,马晶晶,马文萍,冯婕,张小华. Maxout多卷积神经网络融合人脸识别方法和系统.专利号:ZL7.3,授权时间:2020.04.21.
侯彪,焦李成,郑伟伟,王爽,马晶晶,马文萍,冯婕,张小华. 自适应体散射模型的freeman/特征值分解方法.专利号:ZL2.4,授权时间:2020.08.04.
侯彪,焦李成,牟树根,王爽,张向荣,马文萍,马晶晶. 基于收缩自编码器的SAR图像分类方法. 专利号:ZL4.6,授权时间:2019.08.13.
侯彪,焦李成,赵岐, 王爽,马晶晶,马文萍,冯婕,张小华. 基于证据理论算法的SAR图像中检测建筑物方法.专利号:ZL8.3,授权时间:2019.10.11.
侯彪,焦李成,刘胜男,马晶晶,马文萍,王爽,白静. 基于SAR-KAZE特征提取的SAR图像分割方法.专利号:ZL6.8,授权时间:2019.10.11.
侯彪,焦李成,于竞竞,王爽,马晶晶,马文萍,冯婕,张小华. 基于共稀疏模型的高分辨SAR图像分类方法. 专利号:ZL 4.8,授权时间:2019.10.25.
侯彪,焦李成,唐欢,马晶晶,马文萍,王爽,白静. 基于子模字典学习的SAR图像分割方法. 专利号:ZL8.8,授权时间:2019.10.25.
侯彪,焦李成,侯伟丹,王爽,马晶晶,马文萍,冯婕,张小华. 基于空间信息和深度学习的极化SAR图像分类方法.专利号:ZL9.6,授权时间:2019.11.26.
侯彪,焦李成,鞠贵林,王爽,张向荣,马文萍,马晶晶.基于纹理特征和结构相似度的SAR图像质量评估方法. 专利号:ZL6.0, 授权时间:2018.8.31.
侯彪,焦李成,刘达,姚若玉,马晶晶,马文萍,张涛,刘闯.基于空域混合模型的高分辨SAR图像目标检测方法. 专利号:ZL9.X, 授权时间:2018.12.25.
侯彪,焦李成,许声红,马晶晶,熊涛,马文萍,刘红英. 基于Gamma分布的异质超像素SAR图像分割方法. 专利号:ZL7.1, 授权时间:2018.3.6.
侯彪,焦李成,刘小娟,马晶晶,张向荣,马文萍.基于稀疏深度堆栈网络的极化SAR图像分类方法. 专利号:ZL4.1, 授权时间:2018.4.17.
侯彪,焦李成,刘贺,姚若玉,马晶晶,马文萍. 基于深层特征学习和分水岭的SAR图像分类方法. 专利号:ZL0.1,授权时间:2018.6.15.
侯彪,焦李成,吕宏昌,马晶晶,张向荣,马文萍,刘红英.基于张量和稀疏自编码器的极化SAR图像分类方法. 专利号:ZL7.1, 授权时间:2018.6.26.
侯彪,焦李成,寇杏子,王爽,张向荣,马文萍,马晶晶. 结合极化特征和分水岭的极化SAR图像分类方法. 专利号:ZL3.X, 授权时间:2017.01.18.
侯彪,焦李成,牛志伟,王爽,张向荣,马文萍,马晶晶. 一种基于边缘信息和反卷积的SAR图像超分辨率方法. 专利号:ZL1.8, 授权时间:2017.02.15.
侯彪,焦李成,李振炜,张向荣,马文萍,王爽,李卫斌.基于BP优化的压缩感知多层ISAR成像方法.专利号:ZL2.0, 授权时间:2017.02.22.
侯彪,寇宏达,焦李成,王爽,张向荣,马文萍.基于深度神经网络的极化SAR图像分类方法. 专利号:ZL9.5, 2017.04.19.
侯彪,吴小芳,焦李成,王爽,张向荣,马文萍.基于图和Wishart距离的极化SAR图像分类方法.专利号:ZL5.9, 授权时间:2017.04.19.
侯彪,焦李成,张寒冰,马晶晶,张向荣,马文萍.基于矩阵填充的稀疏场景下采样SAR成像方法. 专利号:ZL1.3, 授权时间:2017.07.28.
侯彪,焦李成,龚德钊,王爽,张向荣,马文萍,马晶晶.基于图论和超像素的并行快速SAR图像分割方法.专利号: ZL4.7. 授权时间: 2016.8.10.
侯彪,焦李成,韩博,王爽,张向荣,马晶晶,马文萍.基于K分布和纹理特征的SAR图像分割方法 .专利号: ZL8.X. 授权时间: 2016.8.10.
侯彪,焦李成,张文科,白静,王爽,倪玉峰.基于FPGA的USB转多路链路接口电路.专利号:ZL5.X,授权时间: 2016.1.13.
侯彪,凤宏哲,焦李成,王爽,张向荣,马文萍.基于压缩感知的二维SAR稀疏目标成像方法.专利号:ZL0.7,授权时间:2016.8.17.
侯彪,焦李成,陈超,王爽,张向荣,马文萍,马晶晶. 基于视觉先验模型的极化SAR图像分类方法.专利号: ZL8.5. 授权时间:2016.11.23.
侯彪,李博学,赵睿,焦李成,马文萍,马晶晶,张向荣,王爽.基于DSP的车载实时运动目标检测系统及其方法. 专利号:ZL8.7. 授权时间:2016.1.13.
焦李成,侯彪,李博学,马文萍,马晶晶,张向荣,王爽.基于并行DSP的SAR图像高速处理系统及其方法.专利号:ZL1.8 ,授权时间:2015.11.25.
侯彪,焦李成,李邵利,王爽,张向荣,马文萍.基于观测向量差的SAR图像纹理分类方法.专利号:ZL6.3 ,授权时间:2015.9.30.
侯彪,侯小瑾,周宇,焦李成,王爽.张向荣,马文萍,马晶晶.基于FPGA的K近邻分类器.专利号:ZL5.7 ,授权时间:2015.7.15.
侯彪,侯小瑾,赵睿,焦李成,马文萍,马晶晶,张向荣,王 爽.基于嵌入式DSP的SAR图像实时分割方法.专利号:ZL4.3 ,授权时间:2015.6.17.
侯彪,马晶晶,陈芊芊,焦李成,张向荣,马文萍.基于Beta算法的多尺度SAR图像降噪方法.专利号:ZL3.9 ,授权时间:2015.6.17.
侯彪,焦李成,晨曦,王爽,张向荣,马文萍.基于压缩感知的目标重构方法.专利号:ZL8.X,授权时间:2014.7.23.
侯彪,焦李成,杨伟,张向荣,马文萍,王爽.基于视觉注意机制的图像显著区域检测方法.专利号:ZL9.0,授权时间:2014.8.6.
侯彪,焦李成,孙慧芳,刘芳,张小华,田小林,公茂果.基于SAR图像局部统计特性的K-SVD相干斑抑制方法.专利号:ZL7.3,授权时间:2014.9.17.
侯彪,焦李成,白雪,王爽, 钟桦, 张小华, 公茂果, 缑水平.基于Gabor特征的三马尔可夫场SAR图像分割方法. 专利号:ZL 5.8,授权时间:2013.6.26.
侯彪, 焦李成, 蒋继光, 王爽, 刘芳, 尚荣华.基于稀疏表示的SAR图像相干斑抑制方法. 专利号:ZL 9.7,授权时间:2013.6.26.
侯彪, 焦李成, 孙慧芳, 刘芳, 张小华, 田小林, 公茂果.基于chelesky分解和近似奇异值分解的稀疏K-SVD噪声抑制方法. 专利号:ZL 5.X,授权时间:2013.6.26.
侯彪,焦李成,刘瑞清,张向荣,马文萍,王爽. 基于条件随机场和最小距离法的超光谱图像分类方法. 专利号:ZL 2.5,授权时间:2013.9.25.
侯彪,焦李成,刘瑞清,张向荣,马文萍,王爽. 基于条件随机场的超光谱图像分类方法. 专利号:ZL3.X,授权时间:2013.9.25.
侯彪,焦李成,江琼花,张向荣,马文萍,王爽. 基于视觉注意的压缩感知图像目标重构方法. 专利号:ZL4.X,授权时间:2013.11.12.
侯彪,焦李成,范娜,刘芳,马文萍,王爽,杨国辉. 基于显著性的SAR图像机场跑道边缘检测方法. 专利号:ZL0.X,授权时间:2013.12.25.
焦李成,侯彪,刘娜娜,王爽,刘芳,尚荣华. 基于局部和全局区域信息的水平集SAR图像分割方法. 专利号:ZL2.X,授权时间:2013.10.16.
焦李成,侯彪,蒋继光,王爽,刘芳,尚荣华. 基于小波域中字典学习的SAR图像相干斑抑制方法. 专利号:ZL3.9,授权时间:2013.8.14.




荣誉获奖
1.高分辨SAR影像变化检测关键技术及系统平台,中国人工智能学会优秀科技成果,2020年。
2. 华为云AI名师奖,2020年。
3.智能引领新工科--智能科学与技术国际化创新人才培养探索与实践,陕西省高等教育教学成果奖二等奖,2017年。
4.高分辨SAR影像变化检测关键技术及系统平台,陕西省科学技术奖一等奖,2017年。
5. 计算智能中的协作学习与优化理论及方法,教育部自然科学奖二等奖,2017年。
6. 陕西省青年科技奖,2014年。
7. SAR影像智能信息提取与目标识别,陕西省科学技术奖一等奖,2012年。
8. 高分辨图像智能信息感知与处理关键技术及软件系统,教育部技术发明奖二等奖,2012年。
9. 教育部新世纪优秀人才,2010年。
10. 智能图像理解的基础理论与方法研究,教育部自然科学奖一等奖,2010年。
11. 进化计算理论、方法及其应用,陕西省科学技术奖一等奖,2008年。




科研团队
智能感知与图像理解教育部重点实验室副主任
智能感知与计算国际联合研究中心副主任
智能遥感大数据解译研究中心主任
“西安电子科技大学人工智能研究院”陕西高校新型智库主任
陕西省大数据智能感知与计算2011协同创新中心副主任
西安市类脑计算与深度学习重点实验室主任
西安人工智能工程研究中心副主任
教育部“****支持计划”智能感知与图像理解创新团队
“模式识别与人工智能”中国自动化学会创新团队
“深度学习与类脑智能”陕西省重点科技创新团队
“复杂影像智能感知与解译”陕西高校青年创新团队




课程教学
目前本人承担的教学任务:
研究生教学:
1. 智能目标识别分类技术;
2.智能信息处理新理论、新技术专题研讨;
本科生教学:
1. 人工智能前沿导论;
2. 新生研讨课;
3. 项目主体探讨;
4. 图像理解与计算机视觉(陕西省精品课程





招生要求
· 每年计划招2名博士、9名学术型和专业型硕士(含本部推免保送生2-3名、非全日制2名、广州研究院2名),接收外校保送生名额不限。
· 硕士招生专业为“计算机科学与技术”、“控制科学与工程”、“电子信息”。
· 博士招生专业为“计算机科学与技术”和“控制科学与工程”。
· 考生需具有较好的数学基础、较好的编程能力(Matlab、C/C++、Python)、较好的英文水平。
· 参加过人工智能大赛、数学建模竞赛、电子设计竞赛或者程序设计竞赛等各种省部级以上竞赛,录取时会优先考虑。
· 欢迎对本方向感兴趣的同学加入我们的团队。




Profile
Name Title
Department:

Contact Information
Address:
Email:
Tel:


Introduction
Put brief introduction of yourself here


Research Interests
1.
2.
3.
4.
5.




Research
目前研究团队承担的科研项目:




Papers
[1]
[2]
[3]
[4]
[5]
[6]
[7];
[8]
[9]





Honors
点击网页顶部“添加栏目”可以添加其他栏目
把鼠标放在栏目标题处,尝试拖动栏目。




Team
团队教师




博士研究生
硕士研究生




Teaching
目前本人承担的教学任务:

课件下载 示例




Admission
~~~~~~~~~~~~~~~~~~~~~~~~~~
关于研究生招生的信息:
~~~~~~~~~~~~~~~~~~~~~~~~~~



相关话题/西安电子科技大学 人工智能学院