摘要/Abstract
智能驱动材料可对光、电、温度、溶剂、湿度等外界刺激做出可控的力学响应,并将这些能量转化为机械能而被广泛关注.溶剂型驱动材料是基于简单的湿度或溶剂气氛变化将化学能转换成机械能,并在机械发电、微型器件制备等方面具有重要的潜在应用.本文综述了溶剂型智能驱动材料的驱动类型、驱动原理,性能及其相关应用进展,并对溶剂型智能驱动材料在未来人工智能方面的应用前景进行了展望.
关键词: 溶剂型, 研究进展, 驱动器, 智能
Recently, smart actuator materials have drawn widespread research attention due to their important applications in soft robots, artificial muscles, sensors, or micro hand device preparation. In nature, there are many examples of actuator materials. For example, sea cucumbers can alter the stiffness of their dermis within seconds to obtain survival advantages and the venus flytrap can close their leaves in a second for efficient prey capture. Pinecones and flowers respond to their environment by opening and closing with the relative humidity changes. Inspired by these natural creatures, synthetic polymer microactuators such as polymer hydrogels and polymer composites are widely developed due to their important applications based on their response to external stimuli, such as light, heat, electronic, magnetic, solvent and humidity. In this work, we review the research progress of solvent-based smart actuator materials. There are mainly two kinds of solvent-actuator based on the fabrication method and actuator mechanism:one is a two-layer structure membrane formed by active layers-support layers with different expansion coefficients. The active layer is volumetrically expanded under the action of a solvent, and the support layer is a passive holder. The other is made of rigid material skeleton with a flexible material to make a single-layer composite membrane filler. The ionic gradient or the pore structure gradient of the material itself gives rise to the directional driving behavior with a varying solvent binding gradient. Otherwise, the membrane's bending drive behavior has been achieved by inducing a single material to form an infiltration gradient by a solvent infiltration process. Solvent-based smart actuator materials are prepared by introducing moisture or solvent-responsive molecules in a polymeric material to form a bilayers or monolayer structure. The material is distorted by volume deformation due to humidity or solvent field action. At present, a great deal of research work has been devoted to converting the mechanical deformation of solvent-based smart actuator materials into electric energy and developing related intelligent application in energy transformation, liquid switching, biomimicry, transportation of liquids and smart sensing. The paper presents a pioneering outlook for the further development of the solvent actuator materials.
Key words: solvent-based, research progress, actuator, intelligent
PDF全文下载地址:
点我下载PDF