删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

MBR+蠕虫反应器膜污染特征及微生物群落结构

本站小编 哈尔滨工业大学/2019-10-24

闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶愭煙閻戞ɑ鈷愰悗姘煼閺岋綁寮崒姘闁诲孩纰嶅畝鎼佸蓟濞戞ǚ鏋庣€广儱鎳庢慨搴ㄦ⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闁哄鐗冮弲娑氭暜閵娧呯=濞达絼绮欓崫铏圭磼鐠囪尙澧曢柣锝呭槻椤繄鎹勯崫鍕偓鍧楁⒑閸濆嫭鍌ㄩ柛銊ヮ煼瀹曪綁骞囬悧鍫㈠幗闂佺粯锚瀵爼骞栭幇顒夌唵鐟滃瞼鍒掑▎鎾虫槬闁靛繈鍊栭崵鍐煃閸濆嫬鈧悂鎯冮锔解拺闁告稑锕ユ径鍕煕閹炬潙鍝洪柟顔斤耿楠炲洭鎮ч崼姘闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊ゅ嵆椤㈡岸顢橀悢渚锤闂佸憡绋戦敃銉х礊閸ャ劊浜滈柟鎵虫櫅閻忊晜顨ラ悙宸剶婵﹥妞藉畷妤呮偂鎼粹€承戦梻浣规偠閸ㄨ偐浜搁鍫澪﹂柟鎵閺呮悂鏌ㄩ悤鍌涘40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼崸妤€鎽甸柣蹇撶箰鐎涒晠骞堥妸銉庣喖宕归鎯у缚闂佽绻愬ù姘椤忓牆钃熼柕濞垮劗濡插牓鏌ц箛锝呬簻妞ゅ骏鎷�
闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁逞屽墰閸掓帞鎷犲顔兼倯闂佹悶鍎崝宀勬儍椤愨懇鏀芥い鏃囶潡瑜版帒鏄ラ柡宥庡亗閻掑﹥銇勮箛鎾跺闁绘挻绋戦…璺ㄦ崉閻氭潙浼愰梺鍝勬閸犳劗鎹㈠☉娆忕窞婵☆垰鎼猾宥嗙節绾版ê澧查柟绋垮暱閻g兘骞掗幋鏃€鏂€闂佸綊鍋婇崜姘额敊閺囩偐鏀介柣鎰▕閸ょ喎鈹戦姘煎殶缂佽京鍋ら崺鈧い鎺戝閻撳繘鏌涢埄鍐炬當闁哄棴绲块埀顒冾潐濞测晝绱炴笟鈧妴浣糕槈閵忊€斥偓鐑芥煃鏉炵増顦峰瑙勬礀閳规垿顢欓惌顐簽婢规洟顢橀悩鍏哥瑝闂佸搫绋侀悘鎰版偡閹靛啿鐗氶梺鍛婃处閸嬪棝顢栭崟顒傜閻庣數枪瀛濋梺缁橆殔缁绘帒危閹版澘绫嶉柛顐g箘椤撴椽姊虹紒妯忣亪鎮樺璺虹畾闁挎繂顦伴埛鎺戙€掑顒佹悙濞存粍绻堥弻锛勪沪鐠囨彃顬嬪┑鐐叉閸ㄤ粙骞冨▎鎴斿亾閻㈢數銆婇柡瀣墵濮婅櫣绱掑Ο铏逛桓闁藉啴浜堕弻鐔兼偪椤栨瑥鎯堢紓浣介哺鐢€愁嚕椤曗偓閸┾偓妞ゆ帒瀚崑锟犳煥閺冨倸浜鹃柡鍡樼矌閹叉悂鎮ч崼婵堫儌閻庤鎸风欢姘跺蓟濞戔懇鈧箓骞嬪┑鍥╁蒋闂備礁鎲¢懝楣冨箠鎼淬劍绠掗梻浣稿悑缁佹挳寮插☉婧惧彺闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐粹拺闁兼亽鍎遍埛濂濆┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆鍠楅崵灞轿旈敐鍛殭缂佺姷鍠栭弻鐔煎箚閻楀牜妫勯梺璇茬箺濞呮洜鎹㈠┑瀣瀭妞ゆ劧绲介弳妤冪磽娴f彃浜炬繝銏e煐閸旀牠鎮¢悢鍏肩厓鐟滄粓宕滃▎鎰箚濞寸姴顑嗛悡鏇㈡煃閸濆嫬鈧煤閹绢喗鐓涢悘鐐跺Г閸h銇勯锝囩畵闁伙絿鍏樺畷鍫曞煛閸愨晜鐦掗梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崼娑楁睏闂佺粯鍔曢幖顐︽嚋鐟欏嫨浜滈柟鐑樺灥閳ь剙缍婂畷鎴濐潨閳ь剟寮婚弴鐔虹鐟滃秶鈧凹鍣e鎶芥偐缂佹ǚ鎷洪梺鍛婄☉閿曘倗绮幒鎾茬箚妞ゆ劧绲鹃ˉ鍫熶繆椤愩垺鍤囬柛鈺嬬節瀹曘劑顢欓幆褍鍙婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鍔曠欢鐐碘偓骞垮劚椤︿即鎮″▎鎾村€垫繛鎴炵憽缂傛艾顭胯閸撶喖寮婚悢鍏煎剬闁告縿鍎宠ⅵ婵°倗濮烽崑娑㈡煀閿濆棔绻嗛柣鎴f鎯熼梺闈涱檧婵″洦绂嶅畡鎵虫斀闁绘劖娼欓悘锔芥叏婵犲嫭鍤€妞ゎ厼鐏濋~婊堝焵椤掑嫮宓侀柛鎰╁壆閺冨牆宸濇い鏃囧Г閻濐偊鏌f惔鈥冲辅闁稿鎹囬弻娑㈠箛椤撶偛濮㈠┑鐐茬墢閸嬫挾鎹㈠☉姘e亾閻㈢櫥褰掝敁閹惧墎纾界€广儰绀佹禍楣冩⒒娓氣偓濞佳兾涘Δ鍛柈闁圭虎鍠栫粻鐘绘煏韫囨洖啸闁哄棗顑夐弻鈩冨緞鎼淬垻銆婇梺璇″櫙閹凤拷40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼幐搴c€愰弶鈺傜箞濮婅櫣绮欓幐搴㈡嫳缂備浇顕х粔鐟扮暦閻㈠憡鏅濋柍褜鍓熷﹢渚€姊虹紒妯兼噧闁硅櫕鍔楃划鏃堫敆閸曨剛鍘梺绯曞墲椤ㄥ懘寮抽悢鍏肩厵鐎瑰嫭澹嗙粔鐑樸亜閵忊埗顏堝煘閹达箑鐐婄憸婊勫閸℃稒鈷掑ù锝呮啞閹牓鏌eΔ浣虹煉鐎规洘绮岄埥澶愬閳ュ厖鎴锋俊鐐€栭悧妤冪矙閹炬眹鈧懘鎮滈懞銉ヤ化婵炶揪绲介幗婊堟晬瀹ュ洨纾煎璺猴功娴犮垽妫佹径瀣瘈鐟滃繑鎱ㄩ幘顔肩柈妞ゆ牜鍋涚粻姘舵煕瀹€鈧崑鐐烘偂閵夛妇绠鹃柟瀵稿€戦崷顓涘亾濮樺崬顣肩紒缁樼洴閹剝鎯旈埥鍡楀Ψ缂傚倷绀侀崐鍝ョ矓瑜版帇鈧線寮撮姀鐙€娼婇梺缁樶缚閺佹瓕鈪�9闂傚倸鍊烽懗鍫曘€佹繝鍥ф槬闁哄稁鍓欑紞姗€姊绘笟鈧埀顒傚仜閼活垱鏅堕鈧弻娑欑節閸愨晛鈧劙鏌熼姘殻濠殿喒鍋撻梺闈涚墕閹虫劙藝椤愶附鈷戠紒顖涙礀婢у弶绻涢懠顒€鏋涢柟顕嗙節閸╋繝宕ㄩ瑙勫闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊╀憾楠炴劙鎼归锛勭畾闁诲孩绋掕摫濠殿垱鎸抽幃宄扳枎韫囨搩浠奸梻鍌氬亞閸ㄨ泛顫忛搹瑙勫厹闁告侗鍨伴悧姘舵⒑缁嬪潡顎楃€规洦鍓熷﹢浣糕攽椤斿浠滈柛瀣崌閺岀喖顢欓妸銉︽悙闁绘劕锕弻宥夊传閸曨偅娈查梺璇″灲缂嶄礁顫忓ú顏勭閹艰揪绲哄Σ鍫ユ⒑閸忓吋銇熼柛銊ф暬婵$敻骞囬弶璺紲闂佺粯鍔樼亸娆撍囬锔解拺闁告繂瀚峰Σ瑙勩亜閹寸偟鎳囩€规洘绻堝畷銊р偓娑欋缚閸樻悂鎮楃憴鍕鞍闁告繂閰e畷鎰板Χ婢跺﹦鏌堥梺鍓插亖閸庢煡鎮¢弴鐘冲枑閹艰揪绲块惌娆撶叓閸ャ劎鈽夐柣鎺戠仛閵囧嫰骞嬮敐鍛Х闂佺ǹ绻愰張顒傛崲濞戙垹宸濇い鎰╁灩椤姊虹拠鈥崇仭婵☆偄鍟村顐﹀礃閳哄倸顎撶紓浣割儓濞夋洘绂掗銏♀拻濞达絽鎲¢崯鐐烘煟閵婏妇鐭嬮柟宄版嚇楠炴捇骞掑鍜佹婵犵數鍋犻幓顏嗙礊娓氣偓瀵煡鎳犻鍐ㄐ¢梺瑙勫劶婵倝鎮¢弴鐔剁箚闁靛牆瀚ˇ锕傛煙閸忓吋鍊愰柡灞界Х椤т線鏌涜箛鏃傘€掔紒顔肩墛閹峰懘宕烽褎閿ら梻浣告惈濞层劑宕伴幘璇茬厴鐎广儱顦粻鎶芥煙閹増顥夐柣鎺戠仛閵囧嫰骞嬪┑鍫滆檸闂佺ǹ锕ュΣ瀣磽閸屾艾鈧绮堟笟鈧鐢割敆閳ь剟鈥旈崘顔藉癄濠㈠厜鏅滈惄顖氱暦缁嬭鏃堝焵椤掑啰绠芥繝鐢靛仩閹活亞绱為埀顒佺箾閸滃啰绉€规洩缍侀崺鈧い鎺嶈兌缁犻箖鏌熺€电ǹ浠﹂柣鎾卞劤缁辨帡濡搁敂濮愪虎闂佺硶鏂侀崑鎾愁渻閵堝棗鐏﹂悗绗涘懐鐭堝ù鐓庣摠閻撶喐銇勮箛鎾村櫤閻忓骏绠撻弻鐔碱敊閼恒儯浠㈤梺杞扮劍閸旀瑥鐣烽崼鏇炵厸闁稿本绋戦崝姗€姊婚崒娆戭槮闁硅绻濋幊婵嬪礈瑜夐崑鎾愁潩閻撳骸鈷嬫繝纰夌磿閺佽鐣烽崼鏇ㄦ晢闁稿本姘ㄩ妶锕傛⒒娴e憡鍟為柛鏃€鐗為妵鎰板礃椤旂晫鍘愰梻渚囧墮缁夌敻鎮¤箛娑欑厱闁宠棄妫楅獮妤呮倵濮樼偓瀚�
MBR+蠕虫反应器膜污染特征及微生物群落结构

刘嘉1,2, 左薇2, 张军2, 李慧2, 李俐频2, 田禹1,2

(1.城市水资源与水环境国家重点实验室(哈尔滨工业大学), 哈尔滨150090; 2.哈尔滨工业大学 市政环境工程学院,哈尔滨150090)



摘要:

为研究针对MBR+蠕虫反应器工艺中蠕虫捕食对膜污染的影响, 在常温下分别平行运行MBR+蠕虫反应器(R1)和作为对照系统的MBR+空白蠕虫反应器(R2).监测R1工艺中MBR (S-MBR)和R2工艺中MBR (C-MBR)的跨膜压力(pTM), 检测污泥混合液及泥饼层微生物代谢产物的变化.利用变性梯度凝胶电泳(DGGE)技术分析S-MBR和C-MBR中微生物种类和分布.结果表明: S-MBR的膜污染周期为90 d, C-MBR的膜污染周期为28~37 d, 蠕虫捕食导致S-MBR中SMP和EPS的多糖和蛋白质减少. S-MBR膜丝表面是微生物菌群Alphaproteobacterium, Betaproteobacterium, DeltaproteobacteriumGeobacter, 而C-MBR膜丝表面是微生物菌群Azorhizobium, Rhodobacter, GammaproteobacteriumFlavobacteria, 对MBR膜污染进程起主要作用. Caldilinea可能与S-MBR膜污染减轻有关.蠕虫捕食可改变微生物群落结构, 减缓S-MBR膜污染.

关键词:  膜生物反应器  膜污染  胞外聚合物  溶解性微生物代谢产物  微生物群落结构

DOI:10.11918/j.issn.0367-6234.2017.02.006

分类号:X172

文献标识码:A

基金项目:水体污染控制与治理科技重大专项(2013ZX07201007);黑龙江省杰出青年科学基金(JC201303);哈尔滨工业大学城市水资源与水环境国家重点实验室项目(2014DX03);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(QA201207)



Analysis of membrane fouling and microbial community structure in an MBR+worm reactor

LIU Jia1,2,ZUO Wei2,ZHANG Jun2, LI Hui2, LI Lipin2, TIAN Yu1,2

(1.State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China; 2.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract:

To study the effects of worm predation on membrane fouling in an MBR+worm reactor, an MBR+worm reactor with worm (R1) and an MBR+worm reactor without worm (R2) were operated in parallel. Variation of transmembrane pressure (pTM) and microbial metabolites were studied in the MBR (S-MBR) of the R1 and the MBR (C-MBR) of the R2. Denatured gradient gel electrophoresis (DGGE) was used for analyzing the composition and distribution of microbial community in the S-MBR and the C-MBR. The results showed that the membrane fouling cycles of the S-MBR and the C-MBR were 90 d and 28-37 d, respectively. Worm predation decreased the polysaccharide and proteins in the soluble microbial products (SMP) and extracellular polymeric substances (EPS) of the S-MBR. Alphaproteobacterium, Betaproteobacterium, Deltaproteobacterium, Geobacter on the membrane wire surface of the S-MBR and Azorhizobium, Rhodobacter, Gammaproteobacterium, Flavobacteria on the membrane wire surface of the C-MBR played an important role in the membrane fouling. Caldilinea was suggested to be related to the membrane fouling alleviation of the S-MBR. Worm predation changed the microbial community structure of the S-MBR, resulting in membrane fouling alleviation.

Key words:  MBR  membrane fouling  EPS  SMP  microbial community structure


刘嘉, 左薇, 张军, 李慧, 李俐频, 田禹. MBR+蠕虫反应器膜污染特征及微生物群落结构[J]. 哈尔滨工业大学学报, 2017, 49(2): 32-36. DOI: 10.11918/j.issn.0367-6234.2017.02.006.
LIU Jia, ZUO Wei, ZHANG Jun, LI Hui, LI Lipin, TIAN Yu. Analysis of membrane fouling and microbial community structure in an MBR+worm reactor[J]. Journal of Harbin Institute of Technology, 2017, 49(2): 32-36. DOI: 10.11918/j.issn.0367-6234.2017.02.006.
基金项目 水体污染控制与治理科技重大专项(2013ZX07201007);黑龙江省杰出青年科学基金(JC201303);哈尔滨工业大学城市水资源与水环境国家重点实验室项目(2014DX03);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(QA201207) 作者简介 刘嘉(1983-),女,博士研究生 通讯作者 左薇,zuoweistar@163.com
田禹(1968-),女,博士生导师,****特聘教授,hit_tianyu@163.com 文章历史 收稿日期: 2016-06-19



Contents            -->Abstract            Full text            Figures/Tables            PDF


MBR+蠕虫反应器膜污染特征及微生物群落结构
刘嘉1,2, 左薇2, 张军2, 李慧2, 李俐频2, 田禹1,2    
1. 城市水资源与水环境国家重点实验室(哈尔滨工业大学), 哈尔滨 150090;
2. 哈尔滨工业大学 市政环境工程学院,哈尔滨 150090

收稿日期: 2016-06-19
基金项目: 水体污染控制与治理科技重大专项(2013ZX07201007);黑龙江省杰出青年科学基金(JC201303);哈尔滨工业大学城市水资源与水环境国家重点实验室项目(2014DX03);哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(QA201207)
作者简介: 刘嘉(1983-),女,博士研究生
通讯作者: 左薇,zuoweistar@163.com
田禹(1968-),女,博士生导师,****特聘教授,hit_tianyu@163.com


摘要: 为研究针对MBR+蠕虫反应器工艺中蠕虫捕食对膜污染的影响, 在常温下分别平行运行MBR+蠕虫反应器(R1)和作为对照系统的MBR+空白蠕虫反应器(R2).监测R1工艺中MBR (S-MBR)和R2工艺中MBR (C-MBR)的跨膜压力(pTM), 检测污泥混合液及泥饼层微生物代谢产物的变化.利用变性梯度凝胶电泳(DGGE)技术分析S-MBR和C-MBR中微生物种类和分布.结果表明: S-MBR的膜污染周期为90 d, C-MBR的膜污染周期为28~37 d, 蠕虫捕食导致S-MBR中SMP和EPS的多糖和蛋白质减少. S-MBR膜丝表面是微生物菌群Alphaproteobacterium, Betaproteobacterium, DeltaproteobacteriumGeobacter, 而C-MBR膜丝表面是微生物菌群Azorhizobium, Rhodobacter, GammaproteobacteriumFlavobacteria, 对MBR膜污染进程起主要作用. Caldilinea可能与S-MBR膜污染减轻有关.蠕虫捕食可改变微生物群落结构, 减缓S-MBR膜污染.
关键词: 膜生物反应器    膜污染    胞外聚合物    溶解性微生物代谢产物    微生物群落结构    
Analysis of membrane fouling and microbial community structure in an MBR+worm reactor
LIU Jia1,2, ZUO Wei2, ZHANG Jun2, LI Hui2, LI Lipin2, TIAN Yu1,2    
1. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150090, China;
2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China


Abstract: To study the effects of worm predation on membrane fouling in an MBR+worm reactor, an MBR+worm reactor with worm (R1) and an MBR+worm reactor without worm (R2) were operated in parallel. Variation of transmembrane pressure (pTM) and microbial metabolites were studied in the MBR (S-MBR) of the R1 and the MBR (C-MBR) of the R2. Denatured gradient gel electrophoresis (DGGE) was used for analyzing the composition and distribution of microbial community in the S-MBR and the C-MBR. The results showed that the membrane fouling cycles of the S-MBR and the C-MBR were 90 d and 28-37 d, respectively. Worm predation decreased the polysaccharide and proteins in the soluble microbial products (SMP) and extracellular polymeric substances (EPS) of the S-MBR. Alphaproteobacterium, Betaproteobacterium, Deltaproteobacterium, Geobacter on the membrane wire surface of the S-MBR and Azorhizobium, Rhodobacter, Gammaproteobacterium, Flavobacteria on the membrane wire surface of the C-MBR played an important role in the membrane fouling. Caldilinea was suggested to be related to the membrane fouling alleviation of the S-MBR. Worm predation changed the microbial community structure of the S-MBR, resulting in membrane fouling alleviation.
Key words: MBR    membrane fouling    EPS    SMP    microbial community structure    
污水处理过程中产生的大量污泥容易导致二次环境污染, 进一步的污泥处理和处置增加了污水处理的成本, 限制了污水处理工艺的大规模应用.目前, 作为一项有效的生态技术, 利用微型动物捕食污泥越来越受到关注[1-2].研究表明, 与传统MBR相比, MBR+蠕虫反应器组合工艺具有同步废水处理和污泥减量的特点[3].然而,关于蠕虫捕食对MBR膜污染影响的研究较少.随着MBR膜污染程度的加深, 影响膜污染的微生物代谢产物质量浓度增高, 如溶解性代谢产物(SMP)以及胞外聚合物(EPS)[4].微生物群落结构对膜污染也具有一定影响, 膜污染发展变化过程中, 微生物群落不断演替并最终形成分泌大量黏性物质的优势种群, 此时膜污染程度最深[5-8].为研究蠕虫捕食对膜污染的影响, 通过实验比较了MBR+蠕虫反应器在接种和不接种蠕虫的不同工艺条件下, 微生物代谢产物及微生物群落结构特征, 探索了微生物代谢产物、微生物种群结构与膜污染之间的关系.进一步探讨了微生物引起的膜污染机理.

1 实验 1.1 实验材料MBR接种污泥取自哈尔滨太平污水处理厂二沉池, 污泥经反应器驯化后, MLSS (混合液悬浮固体)质量浓度控制在9 000~10 000 mg·L-1.蠕虫反应器接种污泥为MBR产生的剩余活性污泥, 运行过程中MLSS质量浓度控制在3 000~4 000 mg·L-1.进水为人工模拟生活污水, COD为(337.9±17.2) mg·L-1, NH3-N为(28.2±1.4) mg·L-1, TN (总氮)为(30.5±1.2) mg·L-1, pH为7.5±0.2.

1.2 反应器装置MBR+蠕虫反应器(R1)和作为对照系统的MBR+空白蠕虫反应器(R2)如图 1所示, R1工艺的蠕虫反应器接种蠕虫, R2工艺的空白蠕虫反应器不接种蠕虫.反应器壁的材质为透明有机玻璃, 便于观察反应状态. S-MBR和C-MBR有效容积均为40 L, 都安装一个中空纤维滤膜组件, 有效过滤面积为1 m2, 膜孔径为0.2 μm.蠕虫反应器及空白蠕虫反应器有效容积均为39 L, 两个反应器内都均匀分布多层数个填充了聚乙烯多孔性填料的穿孔板筐, 作为蠕虫的载体.实验所用蠕虫主要为颤蚓类, 经驯化后接种到蠕虫反应器中.蠕虫反应器中穿孔板的面积为0.36 m2, 蠕虫总质量为0.096 kg, 反应器运行过程中蠕虫密度控制在湿重0.27 kg/m2左右.

Figure 1
图 1 MBR+蠕虫反应器(R1)和MBR+空白蠕虫反应器(R2) Figure 1 MBR+worm reactor (R1) and MBR+worm reactor without worms (R2)


1.3 反应器运行同时平行运行R1和R2工艺, 运行条件如表 1所示.蠕虫反应器和空白蠕虫反应器运行过程中均采用连续微曝气和间歇强曝气结合的曝气方式, 连续微曝气风速为0.01~0.05 m3/h, 间歇强曝气风速为0.2~0.3 m3/h, 持续5 min, 频率为12次·d-1, 反应器内的溶解氧(DO)质量浓度保持在1.0~1.5 mg/L [3].每隔24 h, S-MBR和C-MBR中4.5 L污泥分别排入蠕虫反应器和空白蠕虫反应器, 与上一个24 h运行周期结束时剩下的污泥混合液混合; 24 h运行结束后, 蠕虫反应器和空白蠕虫反应器中的污泥沉淀30 min, 4.5 L的污泥混合液(沉淀污泥和少量上清液)排出反应器, 回流到S-MBR和C-MBR.

表 1
表 1 工艺运行条件 Table 1 Parameters of reactors 反应器 SRT/d HRT/h 温度/℃ pH

S-MBR和C-MBR30 7.1 23±2 7.2±0.3

蠕虫反应器1 23±2 7.1±0.2



表 1 工艺运行条件 Table 1 Parameters of reactors


1.4 检测分析方法 1.4.1 常规检测方法采用国家标准方法, 每隔3 d测定S-MBR和C-MBR进水和出水的COD、NH3-N、NO3-N、NO2-N. DO、pH和温度,分别利用JCB-607便携式溶解氧仪、PHSJ-3F实验室pH计和温度计测定. MBR运行过程中,利用膜组件上的真空压力表测定pTM, 表征膜污染程度。

1.4.2 样品处理泥饼层分离方法:选取膜污染周期结束时S-MBR和C-MBR反应器上的膜丝1~2根, 截取中间位置的等长段, 用等量的磷酸盐缓冲溶液将膜丝上的泥饼层冲洗下来, 分别置于离心管中, 用于EPS和DNA提取.

膜丝表面凝胶层分离方法:将冲洗后的膜丝放入离心管中, 加入PBS缓冲溶液进行超声破碎.微生物样品经过超声震动后从膜丝表面脱离到离心管的缓冲溶液中, 按照DNA试剂盒提取方法进行样品中微生物DNA的提取.

1.4.3 SMP、EPS提取方法样品置于离心管中, 5 000 r/min离心5 min, 取上清液经0.45 μm滤膜过滤, 所得滤液即为SMP; 用蒸馏水将离心管中剩余污泥重新定容至原体积, 混合均匀后水浴(80 ℃, 30 min), 离心(5 000 r/min, 5 min), 上清液经0.45 μm滤膜过滤后, 滤液用于EPS分析[9].

1.4.4 微生物群落结构分析利用PCR-DGGE分子生物学方法[10]分析S-MBR和C-MBR中微生物群落结构特征. PCR引物为GC夹的338F和518R[11].

2 结果与讨论 2.1 工艺运行效果比较S-MBR和C-MBR连续运行90 d, 出水COD平均分别为(26.5±5.4)和(25.9±7.3) mg·L-1, COD去除效率分别为(92.4±1.4)%和(92.6±2.0)%; NH3-N平均质量浓度分别为(2.1±0.5)和(2.2±0.8) mg·L-1, NH3-N去除效率分别为(92.6±2.1)%和(92.1±2.8)%.实验结果表明尽管蠕虫捕食释放大量的营养物质(COD和NH3-N)[3], S-MBR仍保持较高的COD和NH3-N去除效率(见表 2).

表 2
表 2 S-MBR和C-MBR废水处理效果 Table 2 Performance of the S-MBR and the C-MBR treating the synthetic wastewater 检测指标进水平均值/
(mg·L-1) S-MBR C-MBR

出水平均值/
(mg·L-1) 平均去除效率/% 出水平均值/
(mg·L-1) 平均去除效率/%

COD 347.2±17.4 26.5±5.4 92.4±1.4 25.9±7.3 92.6±2.0

NH3-N 28.5±1.3 2.1±0.5 92.6±2.1 2.2±0.8 92.1±2.8

TN 29.5±3.2 23.5±1.4 20.3±3.1 23.2±2.1 21.4±2.3



表 2 S-MBR和C-MBR废水处理效果 Table 2 Performance of the S-MBR and the C-MBR treating the synthetic wastewater


2.2 膜污染分析S-MBR和C-MBR连续运行90 d, 分别监测S-MBR和C-MBR的pTM变化, 如图 2所示.当pTM达30 kPa时, 一个膜污染周期结束.C-MBR的膜污染周期较短为28~37 d, 平均pTM增长速率为1.0 kPa/d. S-MBR的膜污染周期较长为90 d, 平均pTM增长速率为0.3 kPa/d, 较C-MBR降低了70%.由图 2可看出, 蠕虫捕食可有效地减缓S-MBR的膜污染速率.

Figure 2
图 2 S-MBR和C-MBR反应器pTM随运行时间变化 Figure 2 Changes of pTM in the S-MBR and C-MBR


工艺运行至90 d时, S-MBR和C-MBR反应器pTM均达30 kPa, 分别对各MBR反应器污泥混合液、生物膜表面泥饼层中微生物代谢产物的成分及其质量浓度进行分析, 结果如表 3所示.可以看出, S-MBR污泥混合液中SMP的糖类和蛋白质类物质质量浓度分别为8.1和7.9 mg·L-1, 较C-MBR低14.7%和18.6%; EPS的糖类和蛋白类物质较C-MBR低2.5%和23.4%. S-MBR中膜表面泥饼层SMP的糖类和蛋白质类物质质量浓度分别为13.5和11.7 mg·L-1, 较C-MBR低24.2%和22.5%; EPS的糖类和蛋白质类物质较C-MBR低3.1%和13.4%.实验结果表明, 与污泥暂时停留在空白蠕虫反应器中相比, 蠕虫捕食污泥可有效地减少S-MBR中污泥混合液及膜表面泥饼层上SMP和EPS的糖类和蛋白质类物质质量浓度.

表 3
表 3 S-MBR和C-MBR反应器微生物代谢产物 Table 3 Microbial metabolites of the S-MBR and the C-MBR mg·L-1

反应器 SMP EPS

糖类 蛋白质类 糖类 蛋白质类

S-MBR 污泥混合液 8.1 7.9 27.5 47.7

膜表面泥饼层 13.5 11.7 34.2 61.3

C-MBR 污泥混合液 9.5 9.7 28.2 62.3

膜表面泥饼层 17.8 15.1 35.3 70.8



表 3 S-MBR和C-MBR反应器微生物代谢产物 Table 3 Microbial metabolites of the S-MBR and the C-MBR


有研究表明, SMP和EPS在生物污染物和膜表面泥饼层形成过程中起到重要作用[12-13], 其中蛋白质和糖类物质可导致膜污染[14].在MBRs膜污染过程中, 膜丝上的微生物代谢产物及微生物菌群的黏附使膜孔阻塞, 膜通量降低.由此推断, S-MBR中污泥混合液及膜表面泥饼层中较低质量浓度的糖类和蛋白质类物质与S-MBR的膜污染减轻有关; 可以通过生态技术手段改变微生物群落结构, 降低产生胞外聚合物的微生物数量, 从而达到延缓膜污染的目的.

2.3 微生物群落与膜污染关系反应器的核心组成主要是活性污泥中的微生物种群[15], 微生物群落结构的特征决定了反应器的功能和运行效果。反应器运行结束时, 即第90天, S-MBR和C-MBR的膜孔被完全堵塞,膜污染周期终止.此时, 分别在S-MBR和C-MBR反应器内对污泥混合液、膜上泥饼层以及膜丝表面凝胶层取样, 分析其微生物群落结构, 结果见图 3.

Figure 3
图 3 基于16S rDNA PCR产物的DGGE图谱 Figure 3 DGGE profile based on the 16S rDNA PCR products


根据图 3, 对DGGE图谱中主要条带进行测序分析, 结果如表 4所示.由图 3和表 4可以看出, 无论是S-MBR还是C-MBR, 不同的生态环境微生物种群结构也不相同.每种微生物种群都有其自身所适应的生态位, 并且随着周围环境的变化而进行演替.通过对比两个MBRs相同生态位上的微生物种群发现, S-MBR的微生物群落结构与C-MBR中不同, 这可能与蠕虫捕食有关.

表 4
表 4 16S rDNA序列比对结果 Table 4 Results of the 16S rDNA sequences 条带号 最接近菌种 登录号 相似度/% 所属细菌类别

1 Uncultured beta proteobacterium JF808902.1 99 Betaproteobacteria

2 Uncultured delta proteobacterium EU629077.1 89 Deltaproteobacteria

3 Uncultured bacterium JQ124797.1 97 Bacteria

4 Arenimonas subflava 16S ribosomal RNA NR_135888.1 99 Flavobacterium

5 Uncultured Geobacter sp LC001501.1 99 Geobacter

6 Uncultured bacterium clone GU501288.1 96 Bacteria

7 Rhodobacter sp. KF309179.1 99 Rhodobacter

8 Uncultured bacterium AB511012.1 94 Bacteria

9 Uncultured Firmicutes bacterium JQ433802.2 92 Firmicutes

10 Uncultured bacterium GU501288.1 96 Bacteria

11 Uncultured Firmicutes bacterium AM888161.1 94 Firmicutes

12 Uncultured Azorhizobium sp. FJ175453.1 96 Azorhizobium

13 Uncultured Thermomonas sp. KT182582.1 99 Thermomonas

14 Uncultured Paracoccus sp KT367742.1 93 Paracoccus

15 Uncultured bacterium FN827274.1 99 Bacteria

16 Thermoanaerobacterales bacterium GU797851.1 92 Thermoanaerobacteriales

17 Uncultured Rhodobacter sp. HF912320.1 94 Rhodobacter

18 Uncultured Caldilinea sp. KJ611603.1 96 Caldilinea

19 Escherichia coli CP007391.1 99 Escherichia

20 Uncultured alpha proteobacterium LN875083.1 97 Alphaproteobacteria

21 Uncultured gamma proteobacterium KF956499.1 98 Gammaproteobacteria

22 Uncultured Azorhizobium sp. LC000980.1 95 Azorhizobium



表 4 16S rDNA序列比对结果 Table 4 Results of the 16S rDNA sequences


另外, S-MBR和C-MBR中污泥混合液的微生物种群结构与其泥饼层的相似, 而与膜丝上的微生物种群基本不同. MBRs反应器运行过程中, 由于曝气强度较高造成水力和气流在膜的泥饼层上不断搅动, 导致膜上泥饼层与污泥混合液不断融合, 形成相似的微生物群落结构; 而膜丝表面上的微生物由于受污泥混合液的冲击较少, 其种群结构与污泥混合液及泥饼层的差别较大.

膜污染周期结束, 膜压30 kPa时, S-MBR膜丝表面的主要微生物为Proteobacteria (变形菌门)的AlphaproteobacteriumBetaproteobacteriumDeltaproteobacterium(变形菌属)、Geobacter(地杆菌属), Chloroflexi (绿弯菌门)的Caldilinea(暖绳菌属)和Bacteria; C-MBR膜丝表面的主要微生物为Proteobacteria (变形菌门)的Azorhizobium(生丝微菌属)、Rhodobacter(红细菌属)、Gammaproteobacterium(变形菌属), Bacteroidetes (拟杆菌门)的Flavobacteria(黄杆菌属), Firmicutes (厚壁菌门)的Thermoanaerobacteriales(热厌氧杆菌目)、Uncultured Firmicutes bacterium和Bacteria.其中, Proteobacteria (变形菌门)和Bacteroidetes (拟杆菌门)易在膜组件形成优势菌群, 同时使膜组件容易发生污染[8].因此推断, S-MBR和C-MBR膜丝表面上检测到的Proteobacteria (变形菌门)和Bacteroidetes (拟杆菌门)对反应器的膜污染具有重要作用.

另外, Proteobacteria (变形菌门)的Paracoccus(副球菌属)为具有反硝化作用的菌属, 表面可产生黏液层, 利于细胞间的黏连, 对膜污染的发展贡献较大[4].蠕虫反应器中存在同步硝化反硝化过程[16], 由于捕食后污泥的回流, S-MBR的污泥混合液、膜上泥饼层和膜丝表面上都发现了Paracoccus(副球菌属), 负面影响了反应器的膜污染进程.与C-MBR相比, Chloroflexi (绿弯菌门)的Caldilinea(暖绳菌属)存在S-MBR的污泥混合液、膜上泥饼层和膜丝表面上不同的生态环境中. Chloroflexi (绿弯菌门)可降解SMP中的碳水化合物及细胞物质, 减少其膜污染倾向, 对MBR处理城市废水具有重要的生态意义[17].因此推断, S-MBR中存在Chloroflexi (绿弯菌门)的Caldilinea(暖绳菌属)可能与反应器膜污染减轻有关.

3 结论1)?MBR+蠕虫反应器工艺能显著降低膜污染速率, 延长膜污染周期. S-MBR膜污染周期为90 d, 膜污染速率为0.3 kPa/d; C-MBR为28~37 d, 1.0 kPa/d.

2)?蠕虫捕食污泥可有效地减少MBR污泥混合液及膜表面泥饼层中SMP和EPS的糖类和蛋白质类物质质量浓度.

3)?S-MBR膜丝表面的主要微生物为Proteobacteria (变形菌门)的AlphaproteobacteriumBetaproteobacteriumDeltaproteobacterium(变形菌属)、Geobacter(地杆菌属); 而C-MBR膜丝表面主要是Proteobacteria (变形菌门)的Azorhizobium(生丝微菌属)、Rhodobacter(红细菌属)、Gammaproteobacterium(变形菌属), Bacteroidetes (拟杆菌门)的Flavobacteria(黄杆菌属).二者的微生物群落结构明显不同.

4)?S-MBR污泥混合液、泥饼层和膜丝上均检测到Chloroflexi (绿弯菌门)的Caldilinea(暖绳菌属), 可能与反应器的膜污染减轻有关.


参考文献
[1]HENDRICKX T L G, ELISSEN H J H, TEMMINK H, et al. Operation of an aquatic worm reactor suitable for sludge reduction at large scale[J].Water Research, 2011, 45(16): 4923-4929.DOI: 10.1016/j.watres.2011.06.031

[2]TAMIS J, SCHOUWENBURG VAN G, KLEEREBEZEM R, et al. A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant[J].Water Research, 2011, 45(18): 5916-5924.DOI: 10.1016/j.watres.2011.08.046

[3]TIAN Y, LU Y B, LI Z P. Performance analysis of a combined system of membrane bioreactor and worm reactor: Wastewater treatment, sludge reduction and membrane fouling[J].Bioresource Technology, 2012, 121: 176-182.DOI: 10.1016/j.biortech.2012.06.071

[4]高大文, 辛晓东. MBR膜污染过程中微生物群落结构与代谢产物分析[J].哈尔滨工业大学学报, 2014, 46(2): 26-32.
GAO Dawen, XIN Xiaodong. Analysis of microbial community structure and metabolites during the MBR membrane fouling process[J].Journal of Harbin Institute of Technology, 2014, 46(2): 26-32.

[5]张斌, 孙宝盛, 刘慧娜, 等. 处理不同废水MBR系统中微生物群落结构的比较[J].环境科学, 2008, 29(10): 2944-2949.
ZHANG Bin, SUN Baosheng, LIU Huina, et al. Comparison of microbial community structure in MBRs treating different wastewater[J].Environmental Science, 2008, 29(10): 2944-2949.

[6]LIM S Y, KIM S, YEON K M, et al. Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater[J].Desalination, 2012, 287: 209-215.DOI: 10.1016/j.desal.2011.09.030

[7]GAO W J, LIN H J, LEUNG K T, et al. Structure of cake layer in a submerged anaerobic membrane bioreactor[J].Journal of Membrane Science, 2011, 374(1): 110-120.DOI: 10.1016/j.memsci.2011.03.019

[8]HUANG L N, WEVER H D, DIELS L. Diverse and distinct bacterial communities induced biofilm fouling in membrane bioreactors operated under different conditions[J].Environmental Science & Technology, 2008, 42(22): 8360-8366.DOI: 10.1021/es801283q

[9]卢耀斌. MBR+蠕虫床污泥减量效能及膜污染控制机制[D].哈尔滨:哈尔滨工业大学, 2014.
LU Yaobin. Research on a combined system of membrane bioreactor and worm reactor for sludge reduction and membrane fouling mitigation[D].Harbin: Harbin Institute of Technology, 2014.

[10]高琼. 聚合酶链式反应(PCR)技术在环境监测中的应用[J].安徽农业科学, 2014, 42(36): 12825-12828.
GAO Qiong. Application of polymerase chain reaction (PCR) technology in environmental monitoring[J].Journal of Anhui Agri Sci, 2014, 42(36): 12825-12828.

[11]LAPARA T M, NAKATSU C H, PANTEA L M, et al. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE[J].Water Research, 2002, 36(3): 638-646.DOI: 10.1016/S0043-1354(01)00277-9

[12]FLEMMING H C, SCHAULE G, GRIEBE T, et al. Biofouling-the achilles heel of membrane processes[J].Desalination, 1997, 113(2): 215-225.DOI: 10.1016/S0011-9164(97)00132-X

[13]RAMESH A, LEE D J, LAI J Y. Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge[J].Applied Microbiology and Biotechnology, 2007, 74(3): 699-707.DOI: 10.1007/s00253-006-0706-x

[14]GVELL C, DAVIS R H. Membrane fouling during microfiltration of protein mixtures[J].Journal of Membrane Science, 1996, 119(2): 269-284.DOI: 10.1016/0376-7388(96)80001-J

[15]WAN C Y, WEVER H D, DIELS L, et al. Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment[J].Water Research, 2011, 45(3): 1129-1138.DOI: 10.1016/j.watres.2010.11.008

[16]TIAN Y, LU Y B. Simultaneous nitrification and denitrification process in a new tubificidae-reactor for minimizing nutrient release during sludge reduction[J].Water Research, 2010, 44(20): 6031-6040.DOI: 10.1016/j.watres.2010.07.069

[17]MIURA Y, WATANABE Y, OKABE S. Significance of chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J].Environmental Science & Technology, 2007, 41(22): 7787-7794.DOI: 10.1021/es071263x


闂傚倸鍊烽懗鍓佸垝椤栫偛绀夋俊銈呮噹缁犵娀鏌熼幑鎰靛殭闁告俺顫夐妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡ゅ懏鏅查幖瀛樼箘閻╁海绱撴担椋庤窗闁革綇缍佸濠氭偄閻撳海顦ч梺鍏肩ゴ閺呮繈鎮¢崒鐐粹拺缂佸娉曢悞鍧楁煙閸戙倖瀚�2濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亜惟闁冲搫顑囩粙蹇涙⒑閸︻厼鍔嬫い銊ユ瀹曠敻鍩€椤掑嫭鈷戦柛娑橈工婵箑霉濠婂懎浠辩€规洘妞介弫鎾绘偐瀹曞洤骞楅梻渚€娼х换鍫ュ磹閺嵮€妲堢憸鏃堝蓟閿濆鐒洪柛鎰典簼閸d即姊虹拠鈥虫殭闁搞儜鍥ф暪闂備焦瀵х换鍌毭洪姀銈呯;闁圭儤顨嗛埛鎴︽煕濠靛棗顏╅柍褜鍓欑紞濠囧箖闁垮缍囬柍鍝勫亞濞肩喖姊虹捄銊ユ珢闁瑰嚖鎷�
濠电姷鏁告慨浼村垂瑜版帗鍋夐柕蹇嬪€曢悙濠勬喐瀹ュ棙鍙忛柕鍫濐槹閳锋垿鏌涘☉姗堝伐缂佹甯楁穱濠囶敃閿濆洦鍒涘銈冨灪濡啯鎱ㄩ埀顒勬煏閸繃锛嶆俊顐㈠閺岋絾鎯旈婊呅i梺鍝ュУ閻楃姴鐣烽姀銈呯妞ゆ梻鏅崢鎼佹⒑閸涘﹥绀嬫繛浣冲洦鍊堕柨婵嗘娴滄粓鏌熺€涙ḿ绠栧璺哄缁辨帞鈧綆浜跺Ο鈧梺绯曟杹閸嬫挸顪冮妶鍡楀潑闁稿鎹囬弻宥囨嫚閺屻儱寮板┑锟犵畺娴滃爼寮诲鍫闂佸憡鎸婚悷鈺佺暦椤栨稑顕遍悗娑櫭禍顖氣攽閻愬弶鈻曞ù婊勭箞瀵煡顢楅崟顒€鈧爼鏌i幇顔芥毄闁硅棄鍊块弻娑㈠Χ閸ヮ灝銏ゆ婢跺绡€濠电姴鍊搁弳锝嗐亜鎼淬埄娈曢柕鍥у閸╃偤顢橀悙宸痪婵犳鍨遍幐鎶藉蓟閿熺姴鐐婇柍杞扮劍閻忎線姊洪崨濠勬喛闁稿鎹囧缁樻媴閸濄儳楔濠电偘鍖犻崱鎰睏闂佺粯鍔楅弫鍝ョ不閺冨牊鐓欓柟顖嗗苯娈堕梺宕囩帛濮婂綊骞堥妸銉庣喓鎷犻幓鎺濇浇闂備焦鎮堕崐褏绮婚幘璇茶摕闁绘棁娅i惌娆撴煙缁嬪灝顒㈤柟顔界懇濮婄儤瀵煎▎鎴犘滅紓浣哄У閻楁洟顢氶敐澶樻晝闁冲灈鏅滈悗濠氭⒑瑜版帒浜伴柛妯哄⒔缁瑩宕熼娑掓嫼闂佸湱枪濞寸兘鍩ユ径鎰厸闁割偒鍋勬晶瀵糕偓瑙勬礀缂嶅﹥淇婂宀婃Ъ婵犳鍨伴妶鎼佸蓟濞戞ǚ妲堟慨妤€鐗婇弫鍓х磽娴e搫校閻㈩垳鍋ら崺鈧い鎺嗗亾闁诲繑鑹鹃…鍨潨閳ь剟骞冭瀹曞崬霉閺夋寧鍠樼€规洜枪铻栧ù锝夋櫜閻ヮ亪姊绘担渚敯闁规椿浜浠嬪礋椤栨稒娅栭梺鍝勭▉閸樹粙鎮¤箛娑欑厱闁斥晛鍟粈鈧銈忕岛閺嗘竼e濠电姷鏁告慨浼村垂閸︻厾绀婂┑鐘叉搐閻掑灚銇勯幒宥堝厡闁愁垱娲熼弻鏇㈠幢濡も偓閺嗭綁鏌$仦鍓ф创妤犵偞甯¢獮瀣倻閸℃﹩妫у┑锛勫亼閸婃牜鏁悙鍝勭獥闁归偊鍠氶惌娆忊攽閻樺弶澶勯柛瀣姍閺岋綁濮€閵忊剝姣勯柡浣哥墦濮婄粯鎷呯粙鎸庡€┑鐘灪閿曘垹鐣烽娑橆嚤閻庢稒锚娴滎垶姊洪崨濠勭畵濠殿垵椴搁幆鏃堝閿涘嫮肖婵$偑鍊栭崝妤呭窗鎼淬垻顩插Δ锝呭暞閻撴盯鏌涢妷锝呭闁汇劍鍨块弻锝夋偄閸欏鐝旈梺瀹犳椤︾敻鐛Ο鑲╃闁绘ê宕銏′繆閻愵亜鈧牕煤濠靛棌鏋嶉柡鍥╁亶缂傛岸鐓崶銊р槈鐎瑰憡绻冮妵鍕箻濡も偓閸燁垶顢欓敓锟�20婵犲痉鏉库偓妤佹叏閻戣棄纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棡妞ゎ偅娲樼换婵嬫濞戝崬鍓扮紓浣哄У閸ㄥ潡寮婚妶鍡樺弿闁归偊鍏橀崑鎾澄旈埀顒勫煝閺冨牆顫呴柣妯烘閹虫捇銈导鏉戠闁冲搫锕ラ敍鍛磽閸屾瑧顦︽い锔诲灦椤㈡岸顢橀姀鐘靛姦濡炪倖宸婚崑鎾寸節閳ь剟鏌嗗鍛紱闂佺粯姊婚崢褔寮告笟鈧弻鏇㈠醇濠垫劖效闂佺ǹ楠哥粔褰掑蓟濞戙垹鍗抽柕濞垮劚椤晠姊烘导娆戠暠缂傚秴锕獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崣搴ㄥ汲閿熺姵鈷戦柛婵嗗椤ユ垿鏌涚€n偅宕屾慨濠冩そ瀹曨偊宕熼崹顐嵮囨⒑閸涘﹥鈷愰柣妤冨█楠炲啴鏁撻悩铏珫闂佸憡娲﹂崜娆撴偟娴煎瓨鈷戦梻鍫熺〒缁犳岸鏌涢幘瀵哥疄闁诡喒鈧枼鏋庨柟閭﹀枤椤旀洘绻濋姀锝嗙【妞ゆ垵妫涚划鍫ュ焵椤掑嫭鍊垫繛鍫濈仢濞呭秹鏌¢埀顒勫础閻戝棗娈梺鍛婃处閸嬫帡宕ョ€n喗鐓曢柡鍥ュ妼楠炴ɑ淇婇崣澶婄伌婵﹥妞藉畷顐﹀礋椤愮喎浜惧ù鐘差儜缂嶆牕顭跨捄鐑樻拱闁稿繑绮撻弻娑㈩敃閿濆棛顦ㄩ梺鍝勬媼閸撶喖骞冨鈧幃娆撴濞戞顥氱紓鍌欒兌婵數鏁垾鎰佹綎濠电姵鑹鹃悙濠囨煥濠靛棙鍣稿瑙勬礋濮婃椽鎳¢妶鍛€惧┑鐐插级閸ㄥ潡骞婂Δ鍐╁磯閻炴稈鍓濋悘渚€姊虹涵鍛涧闂傚嫬瀚板畷鏇㈠箣閿旇棄鈧敻鏌ㄥ┑鍡涱€楁鐐瘁缚缁辨帡鎮╁畷鍥р拰闂佸搫澶囬崜婵嗩嚗閸曨偀妲堟繛鍡楁禋娴硷拷
相关话题/污染 微生物 哈尔滨工业大学 工艺 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 储能缝焊工艺对304不锈钢接头性能的影响
    储能缝焊工艺对304不锈钢接头性能的影响易润华,邓黎鹏(南昌航空大学航空制造工程学院,南昌330063)摘要:为研究电容储能缝焊工艺对304不锈钢接头性能的影响规律,对0.5mm厚304不锈钢板进行了缝焊工艺实验,通过接头拉剪力检测和金相显微组织观察,对比了不同焊接速度、充电电容和放电频率下的缝焊接 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 前驱体温度对激光化学气相沉积YBa2Cu3O 7δ超导薄膜结构及性能的影响
    前驱体温度对激光化学气相沉积YBa2Cu3O7δ超导薄膜结构及性能的影响张琼1,赵培1,吴慰1,戴武斌1,GOTOTakashi2,徐源来3(1.等离子体化学与新材料湖北省重点实验室(武汉工程大学),武汉430205;2.东北大学金属材料研究所,沈阳160001;3.绿色化工过程省部共建教育部重点实 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 泡沫金属三明治结构压印-粘接复合接头剥离性能分析
    泡沫金属三明治结构压印-粘接复合接头剥离性能分析张杰,何晓聪,雷蕾,初明明,刘可欣,黄炎宁(昆明理工大学机电工程学院,昆明650500)摘要:为研究三明治结构压印-粘接复合接头的抗剥离性能,选取AA5052铝合金板以及泡沫镍、泡沫铜以及泡沫铁镍进行压印-粘接复合连接,对接头进行拉伸剪切试验,采用扫描 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 高效净化室内空气污染GO薄膜的制备与性能
    高效净化室内空气污染GO薄膜的制备与性能邹卫武1,2,顾宝珊2,孙世清1,王仕东1,2,李鑫2,杨培燕2,赵皓琦2(1.河北科技大学材料科学与工程学院,石家庄050000;2.先进金属材料涂镀国家工程实验室(中国钢研科技集团有限公司),北京100081)摘要:为研究高效的空气净化材料性能,采用涂覆技 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 静不定结构的热应力分析
    静不定结构的热应力分析杨益航1,王德志2,林高用2(1.福建省功能材料及应用重点实验室(厦门理工学院),福建厦门361024;2.中南大学材料科学与工程学院,长沙410083)摘要:分析了受约束机构内材料热应力存在的危害,给出静不定结构内热应力的定量描述方式:弹性变形状态时,热应力仅与线膨胀系数、弹 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 超音速等离子体喷涂MoSi2涂层工艺研究
    超音速等离子体喷涂MoSi2涂层工艺研究刘喜宗,吴恒,姚栋嘉,张东生,杨超,张相国(巩义市泛锐熠辉复合材料有限公司,河南巩义451261)摘要:涂层技术是C/C复合材料高温抗氧化与抗烧蚀的有效手段,单一的SiC涂层很难为C/C复合材料提供有效的长寿命保护。金属间化合物MoSi2高温时会形成一层致密的 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 铀铌合金结构及性能调控研究进展
    铀铌合金结构及性能调控研究进展蒙大桥,陈向林,陈冬,赵雅文,黄河,法涛(中国工程物理研究院材料研究所,四川绵阳621900)摘要:铀铌合金作为一种重要的核工程材料,因其较高的密度、优异的耐蚀性能和良好的力学性能等特点,被广泛应用于核工业领域。铀铌合金受成分及热处理工艺影响显著,表现出复杂的相转变和组 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 核壳结构纳米镁基复合储氢材料研究进展
    核壳结构纳米镁基复合储氢材料研究进展张秋雨1,2,3,邹建新1,2,3,任莉1,2,3,马哲文1,2,3,朱文1,2,3,丁文江1,2,3(1.上海交通大学轻合金精密成型国家工程研究中心,上海200240;2.上海交通大学材料科学与工程学院,上海200240;3.上海交通大学氢科学中心,上海2002 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 电冲击处理(EST)对TC11钛合金微结构和力学性能的影响研究
    电冲击处理(EST)对TC11钛合金微结构和力学性能的影响研究谢乐春1,2,刘畅1,2,华林1,2(1.现代汽车零部件技术湖北省重点实验室(武汉理工大学),武汉430070;2.汽车零部件技术湖北省协同创新中心(武汉理工大学),武汉430070)摘要:为寻求优化钛合金组织和力学性能的新思路,本文采用 ...
    本站小编 哈尔滨工业大学 2020-12-05
  • 高氮过饱和奥氏体表面改性层结构研究进展
    高氮过饱和奥氏体表面改性层结构研究进展车宏龙,王克胜,梁健,雷明凯(大连理工大学材料科学与工程学院表面工程实验室,辽宁大连116024)摘要:本文针对氮过饱和奥氏体改性层结构本质的研究现状,归纳了近年来国内外相关研究,重点阐述和总结了高氮过饱和奥氏体层的相结构、微结构,以及有序化结构3个方面的相关研 ...
    本站小编 哈尔滨工业大学 2020-12-05