第一部分 考试说明
一、考试性质
高等代数是为全国硕士研究生入学考试数学系各专业设置的课程,它的评价标准是高等学校优秀本科毕业生能达到及格及以上水平。考试对象应为2002年毕业的应届本科毕业生,大学本科毕业后工作两年以上或具有同等学历的在职人员。
二、考试范围
行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧氏空间、(多项式理论、λ-矩阵不单独出题)
三、考试形式与试卷结构
(一)答卷方式:闭卷,笔试;所列题目全部为必答题。
(二)答题时间:180分钟。
(三)各部分的考查比例:
线性方程组:10%
矩阵:20%
二次型10%
线性空间10%
线性变换30%
欧氏空间10%
综合题10%
(四)题型比例
计算题约20%
证明题约80%
(五)参考书目
北京大学数学系,《高等代数》(第二版),高等教育出版社,1988
第二部分 考查要点
一、行列式
1.行列式的定义与性质。
2.低阶行列式,高阶规律性较强的行列式计算。
二、线性方程组
1.解线性方程组
2.线性方程组解的理论
3.线性相关性的证明
三、矩阵
1.矩阵的运算
2.矩阵的逆
3.矩阵秩的不等式的证明
四、二次型
1.化二次型为标准形
2.正定性问题的证明
五、线性空间
1.线性空间与子空间的概念
2.基、维数与坐标
3.子空间的直和的证明
六、线性变换
1.特征值、特征向量有关问题
2.求若当标准形、最小多项式
3.线性变换的值域与核
七、欧氏空间
1.正交矩阵与正交变换
2.实对称阵有关证明