摘要:校园公共区域人流量预测对于维护校园安全、提升校园管理水平有重大意义.尤其在疫情防控下,高校复学对公共区域的人流量预测和控制提出了更高的要求.以高校食堂为例,通过预测就餐人数,有助于食堂防疫人员合理调度和安排,既降低了人群聚集的潜在风险,也可以针对食堂人流量分布情况提供分时分批服务.然而,由于校园管理需求,如节假日和教学安排等因素,使得校园公共区域人流量预测问题颇具挑战性.为此,提出一种基于深度学习的多尺度时序卷积网络MSCNN (multi-scale temporal patterns convolution neural networks),实现人流量时序数据中短时依赖、长时周期模式的获取和多尺度时序模式特征的重标定,以对任意时段人流量进行预测.通过在真实校园环境数据集以及公开数据集上的实验,验证了MSCNN模型的有效性和执行效率.
Abstract:Predicting pedestrian volume in campus public area is of significance for maintaining campus safety and improving campus management level. In particular, due to the outbreak of epidemic, the resumption of college education has put forward higher requirements for the prediction and control of the pedestrian volume in public area. Taking college canteens as an example, predicting the pedestrian volume in canteen is helpful with canteen epidemic prevention worker to make scheduling and arrangement, which not only reduces the risk of crowd gathering, but also provides more considerate service according to the distribution of the pedestrian volume in canteen. Considering the requirements of campus management, e.g., holiday, course arrangement, pedestrian volume prediction in the campus public area is challenging. This study proposes a multi-scale temporal patterns convolution neural networks (MSCNN) based on deep learning to obtain the short-term dependencies as well as long-term periodicities, and reweights the multi-scale temporal pattern characteristics to predict the pedestrian volume at any given time. The effectiveness and efficiency of the MSCNN model are verified by experiments on real-world datasets.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6183
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
多尺度时序依赖的校园公共区域人流量预测
本站小编 Free考研考试/2022-01-02
相关话题/数据 公共 人数 控制 管理
基于人工智能方法的数据库智能诊断
摘要:数据库是一种非常重要和基础的计算机系统软件,随着数据库在各行各业的广泛应用,越来越多的人开始关注数据库运行的稳定性.由于各种各样内部或是外部作用的影响,数据库在实际运行的过程中会出现性能异常,而这可能会带来巨大的经济损失.人们大多通过观察监控指标信息来进行数据库异常诊断,但是关于数据库监控指标 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02GPU数据库核心技术综述
摘要:GPU以其超高速计算能力和超大数据处理带宽受到数据库厂商及研究人员的青睐,以GPU计算为核心的数据库分支(GDBMS)蓬勃发展,以其吞吐量大、响应时间短、成本低廉、易于扩展的特点,与人工智能、时空数据分析、数据可视化、商务智能交互融合能力,彻底改变了数据分析领域的格局.将对GDBMS的四大核心 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据中心负载均衡方法研究综述
摘要:随着云计算的发展,数据中心网络成为近年来学术界和工业界关注的研究热点.现代数据中心网络通常采用胖树等多根树拓扑结构,存在多条可用路径来提供高对分带宽.由于等价多路径路由等传统的负载均衡方法无法适应数据中心网络中高动态和强突发的流量特性,多种针对数据中心的负载均衡方法不断涌现.围绕数据中心中负载 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向AI的数据管理技术综述
摘要:人工智能技术因其强大的学习和泛化能力已被广泛应用于各种真实场景中.然而,现有的人工智能技术仍然面临着三大挑战:第一,现有的AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有的AI算法训练效率低,造成了大量计算资源的浪费,甚至延 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向时序图数据的快速环枚举算法
摘要:时序图数据是一类边上带有时间戳信息的图数据.在时序图数据中,时序环是边满足时间戳递增约束的回路.时序环枚举在现实中有着很多应用,它可以帮助挖掘金融网络中的欺诈行为.此外,研究时序环的数量对于刻画不同时序图的特性也有重要作用.基于2018年由RohitKumar等人提出的时序环枚举算法(2SCE ...中科院软件研究所 本站小编 Free考研考试 2022-01-02软件需求变更管理的系统动力学仿真建模
摘要:软件需求变更频繁发生,给软件项目造成了诸多威胁.能否对需求变更进行有效的控制管理,决定着软件的成败.使用系统动力学方法对软件需求变更管理过程进行仿真建模,可以动态地分析并预测需求变更产生的原因以及变更对软件项目造成的影响;对软件需求变更管理过程改进进行系统动力学仿真,亦可以辅助软件项目组织选择 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据驱动的移动应用用户接受度建模与预测
摘要:应用市场(appmarket)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02函数级数据依赖图及其在静态脆弱性分析中的应用
摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02类属型数据核子空间聚类算法
摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于采样的在线大图数据收集和更新
摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02