摘要:GPU以其超高速计算能力和超大数据处理带宽受到数据库厂商及研究人员的青睐,以GPU计算为核心的数据库分支(GDBMS)蓬勃发展,以其吞吐量大、响应时间短、成本低廉、易于扩展的特点,与人工智能、时空数据分析、数据可视化、商务智能交互融合能力,彻底改变了数据分析领域的格局.将对GDBMS的四大核心组件——查询编译器、查询处理器、查询优化器和存储管理器进行综述,希望促进未来的GDBMS研究和商业应用.
Abstract:In recent years, GPU is favored by database manufacturers and researchers for its ultra-high-speed computing capacity and huge data processing bandwidth. The database branch—GPU accelerating database or GPU database (GDBMS) is developing vigorously. With the characteristics of high throughput, low response time, high cost performance, and easy to expand, integrated with artificial intelligence (AI), business intelligence (BI), spatial-temporal data analysis, data visualization, GDBMS have the potential to change the world pattern of data analysis field. This study surveys the four core components of GDBMS: query compiler, query processor, query optimizer, and storage manager, hoping to promote the future research and commercial application of GDBMS.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6175
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
GPU数据库核心技术综述
本站小编 Free考研考试/2022-01-02
相关话题/数据 数据库 计算 商务 优化
数据中心负载均衡方法研究综述
摘要:随着云计算的发展,数据中心网络成为近年来学术界和工业界关注的研究热点.现代数据中心网络通常采用胖树等多根树拓扑结构,存在多条可用路径来提供高对分带宽.由于等价多路径路由等传统的负载均衡方法无法适应数据中心网络中高动态和强突发的流量特性,多种针对数据中心的负载均衡方法不断涌现.围绕数据中心中负载 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向AI的数据管理技术综述
摘要:人工智能技术因其强大的学习和泛化能力已被广泛应用于各种真实场景中.然而,现有的人工智能技术仍然面临着三大挑战:第一,现有的AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有的AI算法训练效率低,造成了大量计算资源的浪费,甚至延 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02循环迭代程序的一种可信计算算法
摘要:循环迭代程序作为软件的基本组成部分,其正确运行具有重要意义.然而,有时(比如其相关错数大于0时)计算时的舍入误差(或表示误差)会导致循环迭代的计算结果不稳定.基于“中间计算精度自动动态调整”的计算技术,给出了循环迭代程序的一种可信计算算法.利用该算法,可获得循环迭代程序任意次迭代的任意位的正确 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向时序图数据的快速环枚举算法
摘要:时序图数据是一类边上带有时间戳信息的图数据.在时序图数据中,时序环是边满足时间戳递增约束的回路.时序环枚举在现实中有着很多应用,它可以帮助挖掘金融网络中的欺诈行为.此外,研究时序环的数量对于刻画不同时序图的特性也有重要作用.基于2018年由RohitKumar等人提出的时序环枚举算法(2SCE ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于不相似性度量优化的密度峰值聚类算法
摘要:密度峰值聚类(clusteringbyfastsearchandfindofdensitypeaks,简称DPC)是一种基于局部密度和相对距离属性快速寻找聚类中心的有效算法.DPC通过决策图寻找密度峰值作为聚类中心,不需要提前指定类簇数,并可以得到任意形状的簇聚类.但局部密度和相对距离的计算都 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据驱动的移动应用用户接受度建模与预测
摘要:应用市场(appmarket)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02函数级数据依赖图及其在静态脆弱性分析中的应用
摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02类属型数据核子空间聚类算法
摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于采样的在线大图数据收集和更新
摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02分级可逆的关系数据水印方案
摘要:关系数据可逆水印技术是保护数据版权的方法之一.它克服了传统的关系数据数字水印技术的缺点,不仅可以声明版权,而且可以恢复原始数据.现有方法在恢复原始数据时不能控制数据恢复的程度,无法调节数据的可用性.提出了一种分级可逆的关系数据水印方案,定义了数据质量等级来反映水印嵌入对数据可用性的影响,设计了 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02