摘要:应用市场(app market)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷,完善应用质量,提升用户体验.因此,如何正确和综合理解用户对软件的接受程度(简称用户接受度),是应用市场模式下软件开发需考量的重要因素.近年来兴起的软件解析学(software analytics)关注大数据分析技术在软件行业中的具体应用,对软件生命周期中大规模、多种类的相关数据进行挖掘和分析,被认为是帮助开发者提取有效信息、作出正确决策的有效途径.从软件解析学的角度,首先论证了为移动应用构建综合的用户接受度指标模型的必要性和可行性,并从用户评价数据、操作数据、交互行为数据这3个维度给出基本的用户接受度指标.在此基础上,使用大规模真实数据集,在目标用户群体预测、用户规模预测和更新效果预测等典型的用户接受度指标预测问题中,结合具体指标,提取移动应用生命周期不同阶段的重要特征,以协同过滤、回归融合、概率模型等方法验证用户接受度的可预测性,并讨论了预测结果与特征在移动应用开发过程中可能提供的指导.
Abstract:With the popularity of mobile Internet and smart mobile devices in recent years, the app market mode has become one of the main modes of software release. In this mode, app developers have to update their apps rapidly to keep competitive. In comparison with traditional software, the connection between end users and developers of mobile apps is closer with quicker release of software and feedback of users. Understanding and improving user acceptance of mobile apps inevitably becomes one of the main goals for developers to improve their apps. Meanwhile, there is a wealth of data covering different stages of the software cycle of mobile apps in the app-market-centered ecosystem. From the view of software analytics, with techniques such as machine learning and data mining, valuable information could be extracted from data including operation logs, user behavior sequence, etc. to help developers make decisions. This article first demonstrates the necessity and feasibility of building a comprehensive model of user acceptance indicators for mobile apps from a data-driven perspective, and provides basic indicators from three dimensions of user evaluation, operation, and usage. Furthermore, with large-scale datasets, specific indicators are given in three user acceptance prediction tasks, and features from different stages of the software cycle of mobile apps are extracted. With collaborative filtering, regression models, and probability models, the predictability of user acceptance indicators is verified, and the insight of the prediction results in the mobile app development process is provided.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6106
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
数据驱动的移动应用用户接受度建模与预测
本站小编 Free考研考试/2022-01-02
相关话题/软件 数据 指标 市场 综合
软件需求变更管理的系统动力学仿真建模
摘要:软件需求变更频繁发生,给软件项目造成了诸多威胁.能否对需求变更进行有效的控制管理,决定着软件的成败.使用系统动力学方法对软件需求变更管理过程进行仿真建模,可以动态地分析并预测需求变更产生的原因以及变更对软件项目造成的影响;对软件需求变更管理过程改进进行系统动力学仿真,亦可以辅助软件项目组织选择 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02函数级数据依赖图及其在静态脆弱性分析中的应用
摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02类属型数据核子空间聚类算法
摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于采样的在线大图数据收集和更新
摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02分级可逆的关系数据水印方案
摘要:关系数据可逆水印技术是保护数据版权的方法之一.它克服了传统的关系数据数字水印技术的缺点,不仅可以声明版权,而且可以恢复原始数据.现有方法在恢复原始数据时不能控制数据恢复的程度,无法调节数据的可用性.提出了一种分级可逆的关系数据水印方案,定义了数据质量等级来反映水印嵌入对数据可用性的影响,设计了 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02系统软件前沿进展专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/6072 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向操作系统可靠性保障的开源软件供应链
摘要:软件可靠性是软件工程领域中的研究热点之一,故障率分析是软件可靠性的典型研究方法.然而,软件构建模式已从单体模式演进到以开源软件为代表的规模化协作模式,操作系统作为代表性产物之一,所含开源软件之间通过组合关系和依赖关系,形成了一个包含上万节点的供应关系网络.典型方法缺乏对供应关系的考量,无法准确 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于物理及数据驱动的流体动画研究
摘要:主要针对近年来流行的基于物理及数据驱动的各种流体动画模拟算法及其应用给出了一个全面的前沿性综述.首先,对传统的基于物理的流体模拟加速方法进行了综述和总结,同时给出了此类方法中各种算法的优劣性分析;其次,对现有的基于数据驱动的多种算法进行了综述和分析.特别地,将现有的数据驱动方法归结为3类,即数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02SDN数据平面软件一致性测试用例生成方法
摘要:SDN(software-definednetwork)旨在解决架构复杂且分散的传统网络出现的问题,使网络具有更强的灵活性.P4编程语言的特征在于用户可以直接根据自己对处理数据包的需求定义P4程序,然后经过编译过程,生成适配文件将用户需求配置到网络设备.面向P4编程语言的SDN数据平面一致性测 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02区块链的数据管理技术综述
摘要:最近几年,随着加密货币和去中心化应用的流行,区块链技术受到了各行业极大的关注.从数据管理的角度,区块链可以视作是在一个分布式环境下众多不可信节点共同维护且不可篡改的账本.由于节点间相互不可信,区块链通过共识协议,确保数据存储的一致性,实现去中心化的数据管理.针对区块链的安全性以及共识协议,已有 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02