摘要:隐写术及隐写分析是信息安全领域研究热点之一.隐写术的滥用造成许多安全隐患,如非法分子利用隐写进行隐蔽通信完成恐怖袭击.传统隐写分析方法的设计需要大量先验知识,而基于深度学习的隐写分析方法利用网络强大的表征学习能力自主提取图像异常特征,大大减少了人为参与,取得了较好的研究效果.为了促进基于深度学习的隐写分析方法研究,对目前隐写分析领域的主要方法和突破性工作进行了分析与总结.首先,比较了传统隐写分析方法与基于深度学习的隐写分析方法的差异;然后根据训练方式的不同,将基于深度学习的隐写分析模型分为两类——半学习隐写分析模型与全学习隐写分析模型,详细介绍了基于深度学习的各类隐写分析网络结构与检测效果;其次,分析和总结了对抗样本对深度学习安全带来的挑战,并阐述了基于隐写分析的对抗样本检测方法;最后,总结了现有基于深度学习的隐写分析模型存在的优缺点,并探讨了基于深度学习的隐写分析模型的发展趋势.
Abstract:Steganography and steganalysis are one of the research hotspots in the field of information security. The abuse of steganography has caused many potential safety hazards. For example, illegal elements use steganography for covert communications to carry out terrorist attacks. The design of traditional steganalysis methods requires a large amount of prior knowledge, and the steganalysis methods based on deep learning use the powerful representation learning ability of the network to autonomously extract abnormal image features, which greatly reduces human participation and achieves good results. To promote the research of steganalysis technology based on deep learning, this study analyzes and summarizes the main methods and work in the field of steganalysis. Firstly, this study analyzes and compares the differences between traditional steganalysis and deep learning-based steganalysis. Furthermore, according to the different training methods, the steganalysis models based on deep learning are divided into two categories: semi-learning steganalysis model and full-learningsteganalysis model. The network structure and detection effect of various types of steganalysis based on deep learning are introduced in detail. In addition, the challenges that the adversarial samples pose to deep learning security are analyzed and summarized, the detection method of adversarial samples is expounded based on steganalysis. Finally, this study summarizes the pros and cons of existing steganalysis models based on deep learning and discusses its development trends.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6135
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于深度学习的图像隐写分析综述
本站小编 Free考研考试/2022-01-02
相关话题/网络 结构 工作 设计 知识
智能软件定义网络
摘要:近年来,人工智能(artificialintelligence,简称AI)以强劲势头吸引着学术界和工业界的目光,并被广泛应用于各种领域.计算机网络为人工智能的实现提供了关键的计算基础设施.然而,传统网络固有的分布式结构往往无法快速、精准地提供人工智能所需要的计算能力,导致人工智能难以实际应用和 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02复杂网络的双曲空间表征学习方法
摘要:复杂网络在现实场景中无处不在,高效的复杂网络分析技术具有广泛的应用价值,比如社区检测、链路预测等.然而,很多复杂网络分析方法在处理大规模网络时需要较高的时间、空间复杂度.网络表征学习是一种解决该问题的有效方法,该类方法将高维稀疏的网络信息转化为低维稠密的实值向量,可以作为机器学习算法的输入,便 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02网络匿名度量研究综述
摘要:保护网络空间隐私的愿望推动了匿名通信系统的研究,使得用户可以在使用互联网服务时隐藏身份和通信关系等敏感信息,不同的匿名通信系统提供不同强度的匿名保护.如何量化和比较这些系统提供的匿名程度,从开始就是重要的研究主题,如今愈发得到更多关注,成为新的研究焦点,需要开展更多的研究和应用.匿名度量可以帮 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向网络取证的网络攻击追踪溯源技术分析
摘要:首先定位网络攻击事件的源头,然后进行有效的电子数据证据的收集,是网络取证的任务之一.定位网络攻击事件源头需要使用网络攻击追踪溯源技术.然而,现有的网络攻击追踪溯源技术研究工作主要从防御的角度来展开,以通过定位攻击源及时阻断攻击为主要目标,较少会考虑到网络取证的要求,从而导致会在网络攻击追踪溯源 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于级联密集网络的轮廓波变换域图像复原
摘要:近年来,卷积神经网络凭借极强的学习能力,在图像复原任务上实现了比传统学习方法更令人满意的结果.但是,由于丢失了重要的纹理细节,这些基于卷积神经网络的方法普遍存在着复原图像过度平滑的缺点.为解决该问题,提出一种基于级联密集型卷积神经网络的轮廓波域图像复原方法,可以应用于单幅图像去噪、超分辨率及J ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于二跳共同邻居的无人机群体网络演化算法
摘要:无人机集群在执行任务过程中所面临的干扰,对集群通信网络的可靠性提出了新的挑战.针对这一问题,提出了能够同时反映网络非均匀性与节点之间相似性的二跳共同邻居指标.基于该指标,使用链路预测研究方法,考虑网络初始化阶段与网络维护阶段,提出了LPTCN无人机集群网络演化算法.从数学分析与仿真实验两个方面 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于卷积神经网络的砂岩显微图像特征表示方法
摘要:砂岩显微图像分类是地质学研究中一项基本工作,在油气储集层评估等方面有重要意义.在实现自动分类时,由于砂岩显微图像具有复杂多变的显微结构,人工定义特征对砂岩显微图像的表示能力有限.此外,由于样本采集和标注成本高昂,带标记的砂岩显微图像很少.提出一种面向小规模数据集的基于卷积神经网络的特征表示方法 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02FPGA加速系统开发工具设计:综述与实践
摘要:近年来,现场可编程逻辑门阵列(FPGA)在异构计算领域因其优异的可定制性和可重配置特点吸引了工业界和学术界的广泛关注.基于FPGA的硬件加速系统设计涉及到深度的软硬件协同开发,利用软硬件各自开发工具分别开发再集成的传统开发方式具有学习门槛高,集成、测试、部署耗时长等缺陷,开发人员难以利用FPG ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种神经网络指令集扩展与代码映射机制
摘要:近年来,卷积神经网络(CNN)在图像识别和分类领域的高精度表现使其在机器学习领域受到了广泛关注.然而CNN的计算与访存密集特性给需要支持各种负载的通用处理器带来了巨大压力.因此,涌现了大量CNN专用硬件加速器.它们虽然提高了效率但却缺乏灵活性.基于新兴的RISC-V架构设计了包含10条矩阵指令 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于领域语义知识库的疾病辅助诊断方法
摘要:健康医疗领域是一个知识密集型的领域,临床诊断的质量主要依赖于医生所掌握的健康医疗知识以及临床经验.然而,单个医生的能力仍然非常有限,所以目前临床诊断的质量并不高.为此,提出一种基于领域语义知识库的疾病辅助诊断方法,基于Freebase中medicine主题域的知识建立了领域语义知识库,提出计算 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02