删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种神经网络指令集扩展与代码映射机制

本站小编 Free考研考试/2022-01-02

摘要:近年来,卷积神经网络(CNN)在图像识别和分类领域的高精度表现使其在机器学习领域受到了广泛关注.然而CNN的计算与访存密集特性给需要支持各种负载的通用处理器带来了巨大压力.因此,涌现了大量CNN专用硬件加速器.它们虽然提高了效率但却缺乏灵活性.基于新兴的RISC-V架构设计了包含10条矩阵指令的专用指令集RV-CNN.通过抽象典型CNN中的计算为指令,该指令集可灵活支持CNN推理过程并具有比通用ISA更高的代码密度.在此基础上,提出了代码至指令的映射机制.通过在Xilinx ZC702上使用该指令集构建不同网络模型后发现,相比于x86处理器,RV-CNN平均具有141倍的能效和8.91倍的代码密度;相比于GPU,平均具有1.25倍的能效和1.95倍的代码密度.另外,相比于以往的CNN加速器,该设计在支持典型CNN模型的同时仍具有不错的能效.



Abstract:In recent years, due to the high-accuracy performance of Convolutional Neural Network (CNN) in character recognition and image classification, it has received widespread attention in the field of machine learning. Nevertheless, the compute-intensive and memory-intensive characteristics of CNN have posed huge challenges to the general-purpose processor, which needs to support various workloads. Therefore, a large number of CNN-specific hardware accelerators have emerged to improve efficiency. Whereas, although previous accelerators are significantly efficient, they usually lack flexibility. In this study, classical CNN models are analyzed and a domain-specific instruction set of 10 matrix instructions, called RV-CNN, is design based on the promising RISC-V architecture. By abstracting CNN computation into instructions, the proposed design can provide sufficient flexibility for CNN and possesses a higher code density than the general ISA. Based on this, a code-to-instruction mapping mechanism is proposed. By using the RV-CNN to build different CNN models on the Xilinx ZC702, it was found that compared to x86 processors, RV-CNN has an average of 141 times energy efficiency and 8.91 times the code density; compared to GPU, it has an average of 1.25 times energy efficiency and 1.95 times the code density. Besides, compared to previous CNN accelerators, the design supports typical CNN models while having good energy efficiency.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6071
相关话题/代码 计算 设计 图像 网络

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • FPGA加速系统开发工具设计:综述与实践
    摘要:近年来,现场可编程逻辑门阵列(FPGA)在异构计算领域因其优异的可定制性和可重配置特点吸引了工业界和学术界的广泛关注.基于FPGA的硬件加速系统设计涉及到深度的软硬件协同开发,利用软硬件各自开发工具分别开发再集成的传统开发方式具有学习门槛高,集成、测试、部署耗时长等缺陷,开发人员难以利用FPG ...
    本站小编 Free考研考试 2022-01-02
  • 距离约束的网格曲面曲线设计方法
    摘要:针对现有网格曲面曲线设计方法鲁棒性差、收敛慢、适用范围窄等不足,提出一种基于距离约束的新方法.该方法将复杂的流形约束转化为距离约束,并与光滑、插值(逼近)约束共同描述成优化问题.求解时,用切平面逼近局部曲面,并将距离约束松弛成用点到切平面的距离.由于计算距离所用的曲线上的点与其对应的切点相互依 ...
    本站小编 Free考研考试 2022-01-02
  • 轻量级神经网络架构综述
    摘要:深度神经网络已经被证明可以有效地解决图像、自然语言等不同领域的问题.同时,伴随着移动互联网技术的不断发展,便携式设备得到了迅速的普及,用户提出了越来越多的需求.因此,如何设计高效、高性能的轻量级神经网络,是解决问题的关键.详细阐述了3种构建轻量级神经网络的方法,分别是人工设计轻量级神经网络、神 ...
    本站小编 Free考研考试 2022-01-02
  • 面向边缘计算的目标追踪应用部署策略研究
    摘要:目标追踪算法虽已在诸多领域得到广泛应用,然而由于实时性和功耗问题,使得基于深度学习模型的算法难以在移动终端设备上部署应用.结合边缘计算技术,从应用部署优化的角度,对目标追踪算法在移动设备上的部署策略进行研究.通过对目标追踪应用特点、移动设备特性以及边缘云网络架构的分析,提出一种面向边缘计算的目 ...
    本站小编 Free考研考试 2022-01-02
  • 面向稀疏卷积神经网络的GPU性能优化方法
    摘要:近些年来,深度卷积神经网络在多项任务中展现了惊人的能力,并已经被用在物体检测、自动驾驶和机器翻译等众多应用中.但这些模型往往参数规模庞大,并带来了沉重的计算负担.神经网络的模型剪枝技术能够识别并删除模型中对精度影响较小的参数,从而降低模型的参数数目和理论计算量,给模型的高效执行提供了机会.然而 ...
    本站小编 Free考研考试 2022-01-02
  • 面向主干网的网络级绿色节能机制
    摘要:近些年,全球范围内的互联网高能耗问题引发了持续关注,节能已成为未来互联网研究的热门议题之一.面向主干网,提出一种网络级绿色节能机制:一方面,在全局视图中使用最小剩余容量优先的绿色路由算法规划全局路由路径,这样使得网络中开启的捆绑链路数目最小,从而实现第一步节能;另一方面,在局部视图中使用绿色降 ...
    本站小编 Free考研考试 2022-01-02
  • 面向医学图像分割的半监督条件生成对抗网络
    摘要:医学图像分割是计算机辅助诊断的关键技术.青光眼作为全球第二大致盲眼病,其早期筛查和临床诊断依赖于眼底图的视盘和视杯的准确分割.但传统的视盘和视杯分割方法采用人工构建特征,模型泛化能力差.近年来,基于卷积神经网络的端对端学习模型可通过自动发现特征来分割视盘和视杯,但由于标注样本有限,模型难以训练 ...
    本站小编 Free考研考试 2022-01-02
  • 基于意图的网络研究综述
    摘要:随着互联网规模的不断增大,网络管理和运维变得极其复杂,网络自治成为未来网络发展的趋势,基于意图的网络(intent-basednetworking,简称IBN)应运而生.首先从IBN的定义入手,介绍学术界及产业界对IBN范畴及体系结构的描述,并概述IBN实现的闭环,包括意图获取、意图转译、策略 ...
    本站小编 Free考研考试 2022-01-02
  • 多媒体内容的多维度相似性计算与搜索专题前言
    摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5936 ...
    本站小编 Free考研考试 2022-01-02
  • 面向细粒度草图检索的对抗训练三元组网络
    摘要:将草图作为检索示例用于图像检索称为基于草图的图像检索,简称草图检索.其中,细粒度检索问题或类内检索问题是2014年被研究者提出并快速成为广受关注的研究方向.目前研究者通常用三元组网络来解决类内检索问题,且取得了不错的效果.但是三元组网络的训练非常困难,很多情况下很难收敛甚至不收敛,且存在着容易 ...
    本站小编 Free考研考试 2022-01-02