摘要:砂岩显微图像分类是地质学研究中一项基本工作,在油气储集层评估等方面有重要意义.在实现自动分类时,由于砂岩显微图像具有复杂多变的显微结构,人工定义特征对砂岩显微图像的表示能力有限.此外,由于样本采集和标注成本高昂,带标记的砂岩显微图像很少.提出一种面向小规模数据集的基于卷积神经网络的特征表示方法FeRNet,以便有效地捕获砂岩显微图像的语义信息,提高对砂岩显微图像的特征表示能力.FeRNet网络结构简单,可降低网络对带标记图像数据量的要求,防止参数过拟合.针对带标记砂岩显微图像数量不足的问题,提出了图像扩增预处理方法及基于卷积自编码网络的权重初始化策略,降低了因数据不足造成的过拟合风险.基于采自西藏地区的砂岩显微图像数据集设计并进行实验,实验结果表明,在带标记砂岩显微图像数据不足的情况下,图像扩增和卷积自编码网络可以有效地改善FeRNet网络的训练效果,通过FeRNet网络提取的特征对砂岩显微图像的表示能力优于人工定义特征.
Abstract:The classification of microscopic sandstone images is a basic work in geological research, and it has an important significance in the evaluation of oil and gas reservoirs. In the automatic classification of microscopic sandstone images, due to their complex and variable micro-structures, the hand-crafted features have limited abilities to represent them. In addition, since the collection and labeling of sandstone samples are costly, labeled microscopic sandstone images are usually few. In this study, a convolutional neural network based feature representation method for small-scale data sets, called FeRNet, is proposed to effectively capture the semantic information of microscopic sandstone images and enhance their feature representation. The FeRNet has a simple structure, which reduces the quantity requirements for labeled images, and prevents the overfitting. Aiming at the problem of insufficient labeled microscopic sandstone image, the image augmentation preprocessing and a CAE network-based weight initialization strategy are proposed, to reduce the risk of overfitting. Based on the microscopic sandstone images collected from Tibet, the experiments are designed and conducted. The results show that both image augmentation and CAE network can effectively improve the training of FeRNet network, when the labeled microscopic sandstone images are few; and the FeRNet features are more capable of the representations of microscopic sandstone images than the hand-crafted features.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5836
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
一种基于卷积神经网络的砂岩显微图像特征表示方法
本站小编 Free考研考试/2022-01-02
相关话题/图像 网络 数据 结构 实验
基于对象位置线索的弱监督图像语义分割方法
摘要:深度卷积神经网络使用像素级标注,在图像语义分割任务中取得了优异的分割性能.然而,获取像素级标注是一项耗时并且代价高的工作.为了解决这个问题,提出一种基于图像级标注的弱监督图像语义分割方法.该方法致力于使用图像级标注获取有效的伪像素标注来优化分割网络的参数.该方法分为3个步骤:(1)首先,基于分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种神经网络指令集扩展与代码映射机制
摘要:近年来,卷积神经网络(CNN)在图像识别和分类领域的高精度表现使其在机器学习领域受到了广泛关注.然而CNN的计算与访存密集特性给需要支持各种负载的通用处理器带来了巨大压力.因此,涌现了大量CNN专用硬件加速器.它们虽然提高了效率但却缺乏灵活性.基于新兴的RISC-V架构设计了包含10条矩阵指令 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于物理及数据驱动的流体动画研究
摘要:主要针对近年来流行的基于物理及数据驱动的各种流体动画模拟算法及其应用给出了一个全面的前沿性综述.首先,对传统的基于物理的流体模拟加速方法进行了综述和总结,同时给出了此类方法中各种算法的优劣性分析;其次,对现有的基于数据驱动的多种算法进行了综述和分析.特别地,将现有的数据驱动方法归结为3类,即数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02轻量级神经网络架构综述
摘要:深度神经网络已经被证明可以有效地解决图像、自然语言等不同领域的问题.同时,伴随着移动互联网技术的不断发展,便携式设备得到了迅速的普及,用户提出了越来越多的需求.因此,如何设计高效、高性能的轻量级神经网络,是解决问题的关键.详细阐述了3种构建轻量级神经网络的方法,分别是人工设计轻量级神经网络、神 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02SDN数据平面软件一致性测试用例生成方法
摘要:SDN(software-definednetwork)旨在解决架构复杂且分散的传统网络出现的问题,使网络具有更强的灵活性.P4编程语言的特征在于用户可以直接根据自己对处理数据包的需求定义P4程序,然后经过编译过程,生成适配文件将用户需求配置到网络设备.面向P4编程语言的SDN数据平面一致性测 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02区块链的数据管理技术综述
摘要:最近几年,随着加密货币和去中心化应用的流行,区块链技术受到了各行业极大的关注.从数据管理的角度,区块链可以视作是在一个分布式环境下众多不可信节点共同维护且不可篡改的账本.由于节点间相互不可信,区块链通过共识协议,确保数据存储的一致性,实现去中心化的数据管理.针对区块链的安全性以及共识协议,已有 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向稀疏卷积神经网络的GPU性能优化方法
摘要:近些年来,深度卷积神经网络在多项任务中展现了惊人的能力,并已经被用在物体检测、自动驾驶和机器翻译等众多应用中.但这些模型往往参数规模庞大,并带来了沉重的计算负担.神经网络的模型剪枝技术能够识别并删除模型中对精度影响较小的参数,从而降低模型的参数数目和理论计算量,给模型的高效执行提供了机会.然而 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向主干网的网络级绿色节能机制
摘要:近些年,全球范围内的互联网高能耗问题引发了持续关注,节能已成为未来互联网研究的热门议题之一.面向主干网,提出一种网络级绿色节能机制:一方面,在全局视图中使用最小剩余容量优先的绿色路由算法规划全局路由路径,这样使得网络中开启的捆绑链路数目最小,从而实现第一步节能;另一方面,在局部视图中使用绿色降 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02高阶类型化可验证应用系统体系结构建模及案例
摘要:随着应用软件体系结构风格变化和规模变大,其运行环境变得日趋复杂,对应用系统体系结构的设计及其正确性验证提出了新的挑战.现有的应用系统体系结构设计关于需求满足性验证在建模与验证中需要多种工具的支持.应用系统体系结构在设计阶段的需求满足验证,有助于客观评价应用系统部署方案和系统如期上线以及主动运维 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种包解析器硬件配置描述语言及其编译结构
摘要:设计了一种用于实现可重构网络数据包解析器的专用硬件配置描述语言P3.由于要有利于高安全等级网络的实现,侧重于从高可信性角度进行语言设计,包括形式化定义该语言的类型系统和操作语义,以及设计其可信编译结构.基于对可重构硬件基本需求的充分理解,从软硬件协同角度出发,最终明确了P3语言的核心特性及其编 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02