删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

智能软件定义网络

本站小编 Free考研考试/2022-01-02

摘要:近年来,人工智能(artificial intelligence,简称AI)以强劲势头吸引着学术界和工业界的目光,并被广泛应用于各种领域.计算机网络为人工智能的实现提供了关键的计算基础设施.然而,传统网络固有的分布式结构往往无法快速、精准地提供人工智能所需要的计算能力,导致人工智能难以实际应用和部署.软件定义网络(software defined networking,简称SDN)提出集中控制的理念,中央控制器能够按需快速地为人工智能适配计算能力,从而实现其全面部署.将人工智能与SDN网络相结合,实现智能化软件定义网络,既可以解决棘手的传统网络问题,也能够促进网络应用创新.因此,首先研究将人工智能应用于软件定义网络所存在的问题,深入分析基于人工智能的SDN的优势,说明软件定义网络与人工智能结合的必要性.其次,自底向上地从SDN的数据平面、控制平面和应用平面角度出发,思考了不同网络平面与人工智能的结合.通过描述智能化软件定义网络的相关研究历程,介绍了智能软件定义网络在路由优化、网络安全和流量安全这3个方面的关键技术和所面对的挑战.最后,结合其他新兴领域说明智能软件定义网络的优势和前景,并对未来研究工作进行了展望.



Abstract:In the past few years, artificial intelligence (AI) has attracted the attention of both academia and industry with strong momentum and has been widely utilized in various fields. Computer networks provide critical computing infrastructure for the realization of AI. However, it is inefficient to provide AI with computing power in a fast and accurate manner, because of the inherently distributed structure of traditional networks, and it results in the difficulty in practical application and deployment. Software defined networking (SDN) proposes the concept of centralized control, which adapts computing capability for AI on demand and thereby can achieve comprehensive deployment. Combining AI and SDN to realize intelligent software defined networking can not only solve problems of traditional network but also promote network application innovation. Therefore, this paper introduces the problems which exist in the scenario where combining AI and SDN, explains the necessity of SDN based on AI, and analyzes the advantages of combining SDN with AI. Secondly, from the bottom up, the different combination cases of AI and SDN are considered which include data plane, control plane, and application plane. Besides, the challenges and key technologies are introduced from three aspects:routing optimization, network security, and traffic engineering. Furthermore, the advantages and prospects of the intelligent software defined networking are analyzed via combining other emerging fields comparison, and some future research works are outlined.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6120
相关话题/网络 软件 计算 智能 介绍

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 网络匿名度量研究综述
    摘要:保护网络空间隐私的愿望推动了匿名通信系统的研究,使得用户可以在使用互联网服务时隐藏身份和通信关系等敏感信息,不同的匿名通信系统提供不同强度的匿名保护.如何量化和比较这些系统提供的匿名程度,从开始就是重要的研究主题,如今愈发得到更多关注,成为新的研究焦点,需要开展更多的研究和应用.匿名度量可以帮 ...
    本站小编 Free考研考试 2022-01-02
  • 面向网络取证的网络攻击追踪溯源技术分析
    摘要:首先定位网络攻击事件的源头,然后进行有效的电子数据证据的收集,是网络取证的任务之一.定位网络攻击事件源头需要使用网络攻击追踪溯源技术.然而,现有的网络攻击追踪溯源技术研究工作主要从防御的角度来展开,以通过定位攻击源及时阻断攻击为主要目标,较少会考虑到网络取证的要求,从而导致会在网络攻击追踪溯源 ...
    本站小编 Free考研考试 2022-01-02
  • 循环迭代程序的一种可信计算算法
    摘要:循环迭代程序作为软件的基本组成部分,其正确运行具有重要意义.然而,有时(比如其相关错数大于0时)计算时的舍入误差(或表示误差)会导致循环迭代的计算结果不稳定.基于“中间计算精度自动动态调整”的计算技术,给出了循环迭代程序的一种可信计算算法.利用该算法,可获得循环迭代程序任意次迭代的任意位的正确 ...
    本站小编 Free考研考试 2022-01-02
  • 基于级联密集网络的轮廓波变换域图像复原
    摘要:近年来,卷积神经网络凭借极强的学习能力,在图像复原任务上实现了比传统学习方法更令人满意的结果.但是,由于丢失了重要的纹理细节,这些基于卷积神经网络的方法普遍存在着复原图像过度平滑的缺点.为解决该问题,提出一种基于级联密集型卷积神经网络的轮廓波域图像复原方法,可以应用于单幅图像去噪、超分辨率及J ...
    本站小编 Free考研考试 2022-01-02
  • 软件需求变更管理的系统动力学仿真建模
    摘要:软件需求变更频繁发生,给软件项目造成了诸多威胁.能否对需求变更进行有效的控制管理,决定着软件的成败.使用系统动力学方法对软件需求变更管理过程进行仿真建模,可以动态地分析并预测需求变更产生的原因以及变更对软件项目造成的影响;对软件需求变更管理过程改进进行系统动力学仿真,亦可以辅助软件项目组织选择 ...
    本站小编 Free考研考试 2022-01-02
  • 基于二跳共同邻居的无人机群体网络演化算法
    摘要:无人机集群在执行任务过程中所面临的干扰,对集群通信网络的可靠性提出了新的挑战.针对这一问题,提出了能够同时反映网络非均匀性与节点之间相似性的二跳共同邻居指标.基于该指标,使用链路预测研究方法,考虑网络初始化阶段与网络维护阶段,提出了LPTCN无人机集群网络演化算法.从数学分析与仿真实验两个方面 ...
    本站小编 Free考研考试 2022-01-02
  • 一种基于卷积神经网络的砂岩显微图像特征表示方法
    摘要:砂岩显微图像分类是地质学研究中一项基本工作,在油气储集层评估等方面有重要意义.在实现自动分类时,由于砂岩显微图像具有复杂多变的显微结构,人工定义特征对砂岩显微图像的表示能力有限.此外,由于样本采集和标注成本高昂,带标记的砂岩显微图像很少.提出一种面向小规模数据集的基于卷积神经网络的特征表示方法 ...
    本站小编 Free考研考试 2022-01-02
  • 系统软件前沿进展专题前言
    摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/6072 ...
    本站小编 Free考研考试 2022-01-02
  • 面向移动终端智能的自治学习系统
    摘要:在移动终端设备中部署机器学习模型已成为学术界和产业界的研究热点,其中重要的一环是利用用户数据训练生成模型.然而,由于数据隐私日益得到重视,特别是随着欧洲出台GDPR、我国出台《个人信息保护法》等相关法律法规,导致开发者不能任意从用户设备中获取训练数据(特别是隐私数据),从而无法保证模型训练的质 ...
    本站小编 Free考研考试 2022-01-02
  • 面向操作系统可靠性保障的开源软件供应链
    摘要:软件可靠性是软件工程领域中的研究热点之一,故障率分析是软件可靠性的典型研究方法.然而,软件构建模式已从单体模式演进到以开源软件为代表的规模化协作模式,操作系统作为代表性产物之一,所含开源软件之间通过组合关系和依赖关系,形成了一个包含上万节点的供应关系网络.典型方法缺乏对供应关系的考量,无法准确 ...
    本站小编 Free考研考试 2022-01-02