苏州大学 基础医学与生物科学学院,江苏 苏州 215123
收稿日期:2020-12-18;接收日期:2021-03-18;网络出版时间:2021-04-02
基金项目:国家自然科学基金(No. 21878198),苏州大学“大学生创新创业训练计划” (No. 2019xj073) 资助
作者简介:王崇龙?? 苏州大学医学部基础医学与生物科学学院副教授。2011年于韩国庆尚大学获得理学博士学位后留校任助理教授,2016年履职苏州大学工作至今。长期从事微生物代谢工程设计和合成生物学元件开发等研究工作。近年来的研究聚焦于大肠杆菌底盘的适应性和鲁棒性改造以应用于有用萜类化学品的高效合成。已经发表高水平论文40余篇,授权发明专利7项;主持和参与国家自然科学基金、国家重点研发课题、中韩国际合作课题多项.
摘要:三萜类化合物是一类广泛应用于医药、保健和化妆品等行业的天然产物,具有巨大的商业价值。生物合成三萜类化合物依赖于环氧角鲨烯的高效合成。角鲨烯环氧化酶是整个合成途径中的关键酶,其催化NADPH依赖的环氧化反应将角鲨烯转变为环氧角鲨烯。通过筛选不同来源的角鲨烯环氧化酶,截短的大鼠角鲨烯环氧化酶(RnSETC) 在大肠杆菌Escherichia coli工程菌中表现出最强的活性;进一步考察内源性细胞色素P450还原酶样(CPRL) 蛋白对环氧角鲨烯合成的影响显示,在中度拷贝质粒上以Lac启动子调控NADH:醌氧化还原酶(WrbA) 的表达使得环氧角鲨烯产量提高近2.5倍。研究结果表明,所构建的环氧角鲨烯合成途径可以在大肠杆菌中实现三萜类合成关键前体环氧角鲨烯的合成,为生物合成三萜类化合物提供了重要借鉴。
关键词:环氧角鲨烯角鲨烯环氧化酶类细胞色素P450还原酶蛋白大肠杆菌
Construction and optimization of squalene epoxide synthetic pathway in Escherichia coli
Xixi Shao, Yunhe Meng, Shenting Zhou, Liu Xinting, Jiang Huishu, Xiao Xiao, Jing Yang, Gongyuan Wei, Chonglong Wang
School of Biology and Basic medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
Received: December 18, 2020; Accepted: March 18, 2021; Published: April 2, 2021
Supported by: National Natural Science Foundation of China (No. 21878198), Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University (No. 2019xj073)
Corresponding author: Chonglong Wang. Tel: +86-512-65880421; Fax: +86-512-65880103; E-mail: clwang@suda.edu.cn.
Abstract: Triterpenoids are a class of natural products of great commercial value that are widely used in pharmaceutical, health care and cosmetic industries. The biosynthesis of triterpenoids relies on the efficient synthesis of squalene epoxide, which is synthesized from the NADPH dependent oxidation of squalene catalyzed by squalene epoxidase. We screened squalene epoxidases derived from different species, and found the truncated squalene epoxidase from Rattus norvegicus (RnSETC) showed the highest activity in engineered Escherichia coli. Further examination of the effect of endogenous cytochrome P450 reductase like (CPRL) proteins showed that overexpression of NADH: quinone oxidoreductase (WrbA) under Lac promoter in a medium-copy number plasmid increased the production of squalene epoxide by nearly 2.5 folds. These results demonstrated that the constructed pathway led to the production of squalene epoxide, an important precursor for the biosynthesis of triterpenoids.
Keywords: squalene epoxidesqualene epoxidaseCPR-likeEscherichia coli
萜类化合物是一类在自然界广泛分布、具有重要的生理和药理活性的天然化合物[1-2]。按照其所包含的异戊二烯五碳(C5) 单位数目的不同,可分为半萜、单萜、倍半萜、双萜、三萜、四萜等。其中,角鲨烯(Squalene) 是许多三萜类化合物生物合成的前体物质,三萜类化合物合成途径通常起始于环氧角鲨烯(Squalene epoxide) 的形成。环氧角鲨烯再经一系列环化酶的催化下形成不同的三萜碳骨架,如齐墩果烷(Oleanane) 型、乌苏烷(Ursane) 型、木栓烷(Friedelane) 型、羽扇豆烷(Lupane) 型等五环三萜类,它们进一步通过酰化、糖基化或氧化修饰形成各种各样的三萜类化合物衍生物(图 1)。这些衍生物已经被广泛用于医药、保健和化妆品等行业,具有可期的商业应用价值。例如,齐墩果烷型衍生物甘草酸(Glycyrrhizin) 具有消炎、促进膜再生的功效,对许多炎症和肝病、肺病有良好的治疗效果[3-4];木醛烷型雷公藤红素(Celastrol) 是一种有效的肿瘤增殖、侵袭与转移抑制剂,可有效抑制各种癌细胞(例如乳腺癌和前列腺癌等) 的增殖,从而抑制其侵袭和转移[5-7]。
图 1 环氧角鲨烯在大肠杆菌工程菌中的合成途径 Fig. 1 Biosynthetic pathway of squalene epoxide in the engineered E. coli. |
图选项 |
然而,三萜类化合物在天然植物内的合成极其微量,而且植物宿主生长相对缓慢、生长周期长,这使得采取植物原料提取和分离的生产方式受到了极大的挑战[8-9]。此外,由于它们结构所具有的多样性、相似性和复杂性[10],三萜类化合物的化学合成同样困难重重。例如,以10, 11-环氧金合欢烯基乙酸酯和格氏试剂为原料耦合,再经多步立体选择性环化和扩环反应可实现从头合成包含10个手性中心的羽扇豆醇(Lupeol),然而合成效率只有约3%左右[11]。这些因素严重限制了三萜类化合物在各领域的广泛应用。合成生物学和代谢工程学的兴起使得在常见表达宿主中重新设计和构建天然产物代谢途径成为可能。大肠杆菌作为研究最为广泛的模式生物,因其基因组小、结构简单和基因编辑简便等特点,受到越来越多的代谢工程师们的青睐。迄今为止,大肠杆菌已经被开发用于合成多种萜类化合物,包括异戊二烯(Isoprene)[12-13]、金合欢烯(Farnesene)[14]、紫穗槐二烯(Amorphadiene)[15]、紫杉二烯(Taxadiene)[16]、β-胡萝卜素(β-carotene)[17-19]等。同样,研究人员也进行了以大肠杆菌为底盘合成角鲨烯的尝试[20-22]。我们先前的研究将酵母角鲨烯合成酶(Erg9) 和大肠杆菌金合欢烯焦磷酸(Farnesyl diphosphate) 合成酶(IspA) 串联构建角鲨烯合成通路,再将其与甲羟戊酸(Mevalonate,MVA) 途径共同导入大肠杆菌中实现角鲨烯的合成,还通过筛选和过表达大肠杆菌膜蛋白Tsr诱导增大细胞膜面积将角鲨烯产量提高到612 mg/L,建立了高效合成角鲨烯的大肠杆菌底盘细胞[23]。
以此为基础,继续延伸合成途径就可实现三萜类化合物在大肠杆菌中的异源合成。然而,角鲨烯环氧化酶(Squalene epoxidase) 催化角鲨烯形成2, 3-环氧角鲨烯是整个通路中的第一个重要限速环节。角鲨烯环氧化酶是一种非细胞色素P450酶系(Cytochrome P450,CYP450) 的环氧化烯烃酶。它不含有血红素,活性位点不需要结合金属离子。然而,该酶促反应处除需要分子氧[O]外,还需要辅因子FAD、NAD(P)H参与。其催化过程同某些细胞色素P450酶系反应一样,还原型黄素蛋白接受分子氧[O]形成亲电体,再将分子氧[O]传递给角鲨烯产生环氧角鲨烯。但是氧化型黄素蛋白需要在细胞色素P450还原酶(CYP450 reductase,CPR) 作用下以NAD(P)H为电子供体偶联还原。因此,本研究设想在大肠杆菌宿主中筛选有活性的角鲨烯环氧化酶及内源性CPR样(CPR-like,CPRL) 辅助因子,构建和优化环氧角鲨烯合成平台,为“绿色制造”更多的三萜类化合物奠定基础。
1 材料与方法1.1 质粒构建由乙酰辅酶A (Acetyl-CoA) 起始合成异戊烯基焦磷酸(Isoprenyl diphosphate,IPP) 和二甲基丙烯基焦磷酸(Dimethylallyl diphosphate,DMAPP)的完整MVA途径表达载体pSNA、由MVA起始合成IPP和DMAPP的下游MVA途径表达载体pSMvL2为本实验室保存[24]。
通过聚合酶链反应(PCR) 从酿酒酵母Saccharomyces cerevisiae S288c基因组扩增erg1基因片段[25],并通过上下游引物引入的SalⅠ和Hind Ⅲ限制性内切酶位点,将其亚克隆至质粒pTispAErg9TC[23]构建表达载体pTSQErg1。同样,从酿酒酵母S288c基因组扩增ncp1基因片段,将其亚克隆至pTSQErg1的Hind Ⅲ和XhoⅠ位点之间,构建含有CPR的表达载体pTSQErg1Ncp1。将截短型酿酒酵母角鲨烯合成酶基因erg9TC用BamHⅠ和SalⅠ限制性内切酶消化后,亚克隆至pSMvL2构建pSMLSQ。
按照大肠杆菌密码子偏好性合成荚膜甲基球菌Methylococcus capsulatus角鲨烯环氧化酶基因mcSE、Fluviicola taffensis菌角鲨烯环氧化酶基因ftSE、截短型大鼠Rattus norvegicus角鲨烯环氧化酶基因rnSETC,并在所合成基因上下游分别引入BamHⅠ和BglⅡ、SalⅠ限制性内切酶位点,再亚克隆至pTrc99A载体构建pTMcSE、pTFtSE和pTRnSETC。
通过PCR从大肠杆菌MG1655基因组扩增7个CPRL基因,NAD(P)H依赖性醌氧化还原酶基因ytfG[26]、NADPH: 醌氧化还原酶基因mdaB[27]、黄素还原酶基因fre[28]、铁螯合还原酶基因yqjH[29]、硫氧还蛋白还原酶基因trxB、NADPH依赖性FMN还原酶基因ssuE[30]、NADH: 醌氧化还原酶基因wrbA[31],并通过上下游引物引入BamHⅠ和SalⅠ (或XhoⅠ) 限制性内切位点,分别克隆至pTRnSETC构建pTRnSETCCPRL系列载体。同样,将上述CPRL相关基因(ytfG等) 克隆至pSMLSQ构建成pSMLSQ-CPRL系列载体。本研究所构建的质粒与引物详细信息见表 1和表 2。
表 1 本研究中所用的质粒Table 1 Plasmids used in this study
Plasmids | Descriptions | References |
pTispAErg9TC | pTrc99A containing E. coli FPP synthase gene (ispA) and truncated S. cerevisiae squalene synthase gene (erg9) for squalene synthesis | [23] |
pTSQErg1 | pTispAErg9TC containing S. cerevisiae squalene epoxidase gene (erg1) | This study |
pTSQErg1Ncp1 | pTispAErg9TC containing erg1 and putative S. cerevisiae CPR gene (ncp1) | This study |
pTMcSE | pTrc99A containing M. capsulatus squalene epoxidase gene (mcSE) | This study |
pTFtSE | pTrc99A containing F. taffensis squalene epoxidase gene (ftSE) | This study |
pTRnSETC | pTrc99A containing truncated R. norvegicus squalene epoxidase gene (rnSETC) | This study |
pTRnSETCYtfG | pTRnSETC containing E. coli gene(ytfG) | This study |
pTRnSETCMdaB | pTRnSETC containing E. coli gene (mdaB) | This study |
pTRnSETCFre | pTRnSETC containing E. coli gene (fre) | This study |
pTRnSETCYqjH | pTRnSETC containing E. coli gene (yqjH) | This study |
pTRnSETCTrxB | pTRnSETC containing E. coli gene (trxB) | This study |
pTRnSETCSsuE | pTRnSETC containing E. coli gene (ssuE) | This study |
pTRnSETCWrbA | pTRnSETC containing E. coli gene (wrbA) | This study |
pSNA | pSTV28 containing S. pneumoniae mvaK1DK2 operon, E. faecalis mvaES, and E. coli idi gene for generation of IPP and DMAPP from Acetyl-CoA | [23] |
pSMvL2 | pSTV28 containing S. pneumoniae mvaK1DK2 operon and E. coli idi gene for generation of IPP and DMAPP from mevalonate | [24] |
pSMLSQ | pSMvL2 containing E. coli FPP synthase gene (ispA) and truncated S. cerevisiae squalene synthase gene (erg9) for squalene synthesis from mvalonate | This study |
pSMLSQYtfG | pSMLSQ containing E. coli gene (ytfG) | This study |
pSMLSQMdaB | pSMLSQ containing E. coli gene (mdaB) | This study |
pSMLSQFre | pSMLSQ containing E. coli gene (fre) | This study |
pSMLSQYqjH | pSMLSQ containing E. coli gene (yqjH) | This study |
pSMLSQTrxB | pSMLSQ containing E. coli gene (trxB) | This study |
pSMLSQSsuE | pSMLSQ containing E. coli gene (ssuE) | This study |
pSMLSQWrbA | pSMLSQ containing E. coli gene (wrbA) | This study |
表选项
表 2 本研究中所用的引物Table 2 Primers used in this study
Primers | Sequences (5′–3′) | Restriction enzymes |
Erg1-sal-F | CTAGTCGACAGAAGGAGATATACATATGTCTGCTGTTAACGTTGCAC | (Sal Ⅰ) |
Erg1-hindxho-R | GAGAAGCTTCTCGAGTTAACCAATCAACTCACCAAAC | (Hind Ⅲ, Xho Ⅰ) |
NCP1-xho-F | CTACTCGAGAAGGAGATATACATATGCCGTTTGGAATAGACAACAC | (BamH Ⅰ) |
NCP1-hind-R | GAGAAGCTTACCAGACATCTTCTTGGTATC | (Hind Ⅲ) |
yqjH-bam-F | GCGGATCCAAGGAGATAACAATGAATAACACCC | (BamH Ⅰ) |
yqjH-sal-R | AGTGTCGACTTACTTTGCGTGCCAGTAAGC | (Sal Ⅰ) |
ssuE-bam-F | GCGGATCCAGGAGAAATATATGCGTGTCATCACCCTGGC | (BamH Ⅰ) |
ssuE-sal-R | AGTGTCGACGATGTTACGCATGGGCATTACC | (Sal Ⅰ) |
wrbA-bam-F | GCGGATCCAAGGAGATAATAAATGGCTAAAGTTCTGGTGC | (BamH Ⅰ) |
wrbA-sal-R | AGTGTCGACGCATGCGTATCCTCCTGTTG | (Sal Ⅰ) |
ytfG-bam-F | GCGGATCCAAGGAGAATATAAATGATCGCTATTACTGGTGCC | (BamH Ⅰ) |
ytfG-sal-R | AGTGTCGACGTCATTATCAGAGAGGATGC | (Sal Ⅰ) |
mdaB-bam-F | GCGGATCCAAGGAGAATATAAATGAGCAACATCCTGATTATC | (BamH Ⅰ) |
mdaB-sal-R | CGTGTCGACAAGCCTGAGCTCTAGTTAAC | (Sal Ⅰ) |
fre-bam-F | GCGGATCCAAGGAGAATATAAATGACAACCTTAAGCTGTAAAGTG | (BamH Ⅰ) |
fre-xho-R | GATCTCGAG CCGTTCTTCCCGCCTGTCAG | (Xho Ⅰ) |
trxB-bam-F | GCGGATCCAAGGAGAATATAAATGGGCACGACCAAACACAG | (BamH Ⅰ) |
trxB-sal-R | CGTGTCGACCATAGTCGCATGGTGTCGC | (Sal Ⅰ) |
The restriction enzymes are listed after each sequence and the digestion sites are underlined. |
表选项
1.2 菌株和培养条件大肠杆菌DH5α用作质粒克隆和环氧角鲨烯合成的宿主菌。挑取的重组大肠杆菌菌落于LB培养基(胰蛋白胨10 g/L、酵母提取物5 g/L、氯化钠10 g/L) 中,在37 ℃恒温气浴摇床中,以200 r/min振荡培养12 h后用于质粒的克隆和扩增。分别将所构建的环氧角鲨烯合成模块质粒和IPP/DMAPP供给质粒共同转化到大肠杆菌DH5α中构建各环氧角鲨烯工程菌株,其详细信息见表 3。培养环氧角鲨烯工程菌时,首先挑取单克隆于2YT培养基(胰蛋白胨16 g/L、酵母提取物10 g/L、氯化钠5 g/L) 中,在30 ℃恒温气浴摇床中,200 r/min振荡培养12 h作为种子液;再以0.1%的接种量接种到含有2%甘油(V/V)和0.1 mmol/L异丙基硫代半乳糖苷(IPTG) 的新鲜2YT培养基,继续在30 ℃恒温气浴摇床中200 r/min振荡培养48 h后,用于环氧角鲨烯的合成检测。培养时根据需要加入氨苄青霉素和(或) 氯霉素分别至终浓度100 mg/L和50 mg/L。
表 3 本研究中所用的菌株Table 3 Strains used in this study
Strains | Descriptions | References |
E. coli DH5α | F—, Φ80dlacZ△M15, △(lacZYA-argF)U169, deoR, recA1 endA1, hsdR17(rK—mK+), phoA, supE44, λ—, thi-1 | Our lab |
NA-SQ | E. coli DH5α transformed with pSNA and pTispAErg9TC | This study |
NA-SQE1 | E. coli DH5α transformed with pSNA and pTSQErg1 | This study |
NA-SQE1-Ncp1 | E. coli DH5α transformed with pSNA and pTSQErg1Ncp1 | This study |
ML-SQE2 | E. coli DH5α transformed with pSMLSQ and pTRnSETC | This study |
ML-SQE3 | E. coli DH5α transformed with pSMLSQ and pTFtSE | This study |
ML-SQE4 | E. coli DH5α transformed with pSMLSQ and pTMcSE | This study |
ML-SQE2-YtfG-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCYtfG | This study |
ML-SQE2-MdaB-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCMdaB | This study |
ML-SQE2-Fre-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCFre | This study |
ML-SQE2-YqjH-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCYqjH | This study |
ML-SQE2-TrxB-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCTrxB | This study |
ML-SQE2-SsuE-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCSsuE | This study |
ML-SQE2-WrbA-a | E. coli DH5α transformed with pSMLSQ and pTRnSETCWrbA | This study |
ML-SQE2-YtfG-b | E. coli DH5α transformed with pTRnSETC and pSMLSQYtfG | This study |
ML-SQE2-MdaB-b | E. coli DH5α transformed with pTRnSETC and pSMLSQMdaB | This study |
ML-SQE2-Fre-b | E. coli DH5α transformed with pTRnSETC and pSMLSQFre | This study |
ML-SQE2-YqjH-b | E. coli DH5α transformed with pTRnSETC and pSMLSQYqjH | This study |
ML-SQE2-TrxB-b | E. coli DH5α transformed with pTRnSETC and pSMLSQTrxB | This study |
ML-SQE2-SsuE-b | E. coli DH5α transformed with pTRnSETC and pSMLSQSsuE | This study |
ML-SQE2-WrbA-b | E. coli DH5α transformed with pTRnSETC and pSMLSQWrbA | This study |
表选项
1.3 环氧角鲨烯的提取和测定将48 h培养液于12 000 r/min离心1 min后收集沉淀,并用一定体积的灭菌水悬浮。悬浮后的样品与等体积的氯仿和甲醇混合,振荡萃取1 h;然后转移上层氯仿相至新离心管中。再用一体积的氯仿以相同的方式萃取一次。使用真空离心浓缩仪从混合液中去除氯仿相,最后将样品重新溶解于乙酸乙酯中用于气相色谱和质谱分析。
环氧角鲨烯定性、定量分析使用配有FID的气相色谱仪(GC;Agilent Technologies 7890A)。样品以1︰10的分流比注入19091N-133 HP-INNOWAX色谱柱(长度30 m;内径250 μm;膜厚0.25 μm)。GC条件如下:初始烘箱温度为50 ℃,保持1 min,以5 ℃/min的速率加热至80 ℃,然后再以40 ℃/min的速率加热至最终温度260 ℃,并保持1 min;检测器温度保持为260 ℃。在相同的气相色谱条件下,用气相色谱-质谱法(GC-MS;GCMS-2010 Ultra;Shimadzu) 对样品各析出峰进行表征,数据采集的m/z范围为40–350,溶剂延迟cut-off时间为2.5 min。
2 结果与分析2.1 基于酿酒酵母基因的环氧化角鲨烯生物合成途径的构建先前的研究通过串联截短的酿酒酵母角鲨烯合酶基因erg9 (erg9TC) 和大肠杆菌FPP合酶基因ispA,构建了角鲨烯合成模块IspA-Erg9TC (pTispAErg9TC)。在此基础上,环氧角鲨烯合成模块IspA-Erg9TC-Erg1 (pTSQErg1) 可以通过引入酵母角鲨烯环氧化酶基因erg1构建。考虑到角鲨烯的环氧化反应需要CPR辅因子的参与[32],酵母NADPH依赖性CPR辅因子基因ncp1一并与其串联,构建pTSQErg1Ncp1表达载体(图 2A)。由于甲羟戊酸途径模块表达质粒pSNA可在大肠杆菌中利用乙酰辅酶A从头合成IPP和DMAPP前体[23],所构建的质粒分别与pSNA质粒共转化大肠杆菌DH5α,获取工程菌株NA-SQE1和NA-SQE1-Ncp1;同时将pSNA和pTispAErg9TC共转化获取的工程菌株NA-SQ作为无法进行环氧角鲨烯合成的对照组。所构建的工程菌培养48 h后,菌体经提取并进行气相色谱(GC) 分析。如图 2B所示,角鲨烯标准品的保留时间约为10.2 min,环氧角鲨烯标准品的保留时间约为12.7 min。工程菌株NA-SQE1、NA-SQE1-Ncp1同对照组NA-SQ一样,只在10.2 min处出现角鲨烯的特征峰,而在12.7 min处均没有明显的特征峰。这一结果表明,无论是否引入CPR辅因子Ncp1,所构建的环氧角鲨烯合成模块IspA-Erg9TC-Erg1都无法将角鲨烯环氧化形成环氧角鲨烯。我们推测,酵母角鲨烯环氧化酶Erg1的活性可能受到大肠杆菌宿主环境的影响,从而导致加氧失败。
图 2 基于酿酒酵母基因的环氧角鲨烯合成模块的构建和性能测试 Fig. 2 Construction and validation of the squalene epoxide biosynthesis module using S. cerevisiae genes. (A) Squalene epoxide biosynthesis module. (B) GC validation of the squalene epoxide synthesized. |
图选项 |
2.2 外源角鲨烯环氧化酶在大肠杆菌中的活性筛选据文献报道,来自荚膜甲基球菌M. capsulatus、F. taffensis菌和大鼠R. norvegicus的角鲨烯环氧化酶McSE、FtSE和RnSE可以在大肠杆菌中表达,并表现出环氧化活性[33-34]。而且,相较于细菌角鲨烯环氧化酶,大鼠角鲨烯环氧化酶RnSE的C端存在一个跨膜结构域,将其截短可以提高在大肠杆菌中的表达水平[34]。因此,本研究继续考察了细菌来源的角鲨烯环氧化酶FtSE、McSE和截短的RnSETC在大肠杆菌工程菌中对角鲨烯进行加氧的性能。根据大肠杆菌密码子偏好性重新设计的3个角鲨烯环氧化酶基因rnSETC、ftSE和mcSE被克隆至含有高拷贝数和强启动子的pTrc99A载体构建pTRnSETC、pTFtSE和pTMcSE质粒;角鲨烯合成模块IspA-Erg9TC重新与甲羟戊酸途径下游部分串联构建从甲羟戊酸到角鲨烯的合成模块(pSMLSQ,图 3A);pTRnSETC、pTFtSE和pTMcSE质粒再分别与pSMLSQ质粒共同转化于大肠杆菌DH5α获得工程菌株ML-SQE2、ML-SQE3和ML-SQE4。培养48 h后的样品提取物经GC检测发现,除在10.2 min有明显的角鲨烯特征峰(Peak 1#) 外,在12.7 min处也出现与环氧角鲨烯相同滞留时间的特征峰(Peak 2#,图 3B)。其中,含有大鼠角鲨烯环氧化酶RnSETC的ML-SQE2工程菌株表现出最强的特征峰信号。GC-MS进一步分析显示Peak 2#特征峰质谱图与环氧角鲨烯标准品一致,确为环氧角鲨烯(图 3C)。这一结果表明,此3种角鲨烯环氧化酶在大肠杆菌中均有活性,且其活性受到种属来源特异性的影响;同时,结果也表明大肠杆菌中可能存在CPRL辅因子协助角鲨烯环氧化酶共同完成角鲨烯的加氧过程。
图 3 不同来源角鲨烯环氧化酶对氧化鲨烯合成的影响 Fig. 3 Effect of different squalene epoxidases on squalene epoxide production. (A) construction of the squalene epoxidases from different species. (B, C) GC-MS validation of the squalene epoxide synthesized. The spectrums of squalene and squalene epoxide are inserted in Fig. 3C. |
图选项 |
2.3 大肠杆菌内源性CPRL辅因子对环氧角鲨烯合成的影响大肠杆菌氧化磷酸化依赖电子传递链上存在的大量电子传递酶及同工酶,例如,NADPH: 醌氧化还原酶可催化醌类物质的双电子还原和保护细胞免受单电子还原引起的自由基和活性氧的毒性作用[35]。这些电子传递酶可以按照不同的方式组合,使得大肠杆菌能以泛醌池为连接点利用多种底物提供和接受电子[36]。7个电子传递酶(NAD(P)H依赖性醌氧化还原酶YtfG、NADPH: 醌氧化还原酶MdaB、黄素还原酶Fre、铁螯合还原酶YqjH、硫氧还蛋白还原酶TrxB、NADPH依赖性FMN还原酶SsuE、NADH: 醌氧化还原酶WrbA[26-31]) 被选为候选CPRL辅因子,并进行辅助行使角鲨烯环氧化功能的考察。此7个候选基因与表现优异的角鲨烯环氧化酶基因rnSETC分别串联构建pTRnSETCCPRL质粒系列(图 4A),并分别与PMSLQ质粒共转化于大肠杆菌获得ML-SQE2-CRPL-a系列工程菌。各工程菌株培养48 h后,其细胞生长量与ML-SQE2菌株相比较,除了过表达MdaB和Fre菌株生长较好外,其余各菌株生长均明显低于ML-SQE2菌株;在环氧角鲨烯合成方面,仅过表达MdaB和Fre的菌株有环氧角鲨烯的生成,但产量降为ML-SQE2菌株产量(15.0 mg/L) 一半左右,其余各菌株环氧角鲨烯产量均低于检测水平(图 4B)。由于ML-SQE2- CRPL-a系列工程菌中,CPRL被构建在高拷贝的pTrc99A质粒上,同时受到强Trc启动子的控制,我们推测,这些氧化还原酶表达量的增加有可能打破了呼吸链原有的稳态,影响细胞正常的能量代谢,从而导致细胞生长受到了抑制。因此,7个候选CPRL辅因子被重新构建于受相对较弱的Lac启动子控制的中度拷贝pSMLSQ质粒,再和pTRnSETC共转化大肠杆菌,获得ML-SQE2-CRPL-b系列工程菌(图 4C)。如我们所料,在相同的培养下,ML-SQE2-CRPL-b系列工程菌表现出与ML-SQE2-CRPL-a系列完全不同的结果。如图 4D所示,各菌株细胞生长量与ML-SQE2菌株相比没有明显差异;而且,除过表达TrxB菌株外,其他各菌株均能合成环氧角鲨烯。其中,过表达WrbA菌株ML-SQE2-WrbA-b合成37.4 mg/L环氧角鲨烯,比ML-SQE2菌株提高了近2.5倍。
图 4 调控CPRL的表达量优化环氧角鲨烯合成途径 Fig. 4 Optimization of the squalene epoxide biosynthesis pathway by regulating the expression of CPRLs. (A, C) The construction of CPRL controlled by different promoters. (B, D) Cell growth (dots) and production of squalene epoxide (bars). The "n.d." indicates "not detected". |
图选项 |
3 讨论与结论为了在大肠杆菌中合成环氧角鲨烯,本研究首先构建了基于酵母角鲨烯环氧化酶的工程菌株NA-SQE1和NA-SQE1-Ncp1。然而,它们均没有表现出对角鲨烯加氧的能力,我们推测大肠杆菌宿主的微环境可能限制了角鲨烯环氧化酶的活性。通过筛选不同物种来源的角鲨烯环氧化酶,本研究获得的截短大鼠角鲨烯环氧化酶RnSETC在大肠杆菌中具有较高的活性,可用于代谢工程编辑生产环氧角鲨烯。同时,尽管在本研究中细菌来源的McSE、FtSE没有表现出比RnSETC更高的活性,但也证实了其在大肠杆菌中环氧化角鲨烯的潜能。此外,最近的研究报道了利用拟南芥角鲨烯环氧化酶在大肠杆菌中合成三萜骨架达玛烯二醇Ⅱ[37],文中强调了CPR辅因子对角鲨烯环氧化酶的重要性。我们的研究结果表明,有些角鲨烯环氧化酶,例如McSE、FtSE、RnSETC,可以在大肠杆菌中不引入异源辅助因子的情况下发挥加氧作用合成环氧角鲨烯。
本研究从大肠杆菌中电子传递链上7个电子传递酶中进行筛选CPR辅因子时发现,YtfG、YqjH、TrxB、SsuE、WrbA的表达水平较高时,宿主菌的生长受到明显抑制,也导致工程菌株中环氧角鲨烯的合成能力严重削弱。呼吸链的一个重要功能是维持氧化还原水平的平衡和NAD+的再生。高表达候选CPRL可能会打乱电子传递链各酶之间的平衡,从而影响TCA循环和氧化磷酸化等能量代谢途径及代谢产物的合成。通过将CPRL候选基因克隆至ML-SQE2质粒上,降低CPRL的表达可以协调其与角鲨烯环氧化酶的表达水平。因此,恰当的CPRL表达水平使得ML-SQE2-WrbA-b菌株合成环氧角鲨烯能力相比对照组提高了近2.5倍,这一产量是解脂耶氏酵母工程菌所合成环氧角鲨烯的1.7倍[38]。在大肠杆菌中,WrbA与角鲨烯环氧化酶之间可能具有良好的相容性,但是更适合的表达水平和CPRL仍需要进一步研究,以提高环氧角鲨烯和三萜类化合物的生物合成。
本研究不仅在大肠杆菌中成功地构建了环氧角鲨烯合成途径,还揭示了大肠杆菌宿主借助细胞内源性CPRL完成角鲨烯的加氧作用,而且环氧角鲨烯的合成受到CPRL表达水平的直接影响。本研究结果可以为代谢工程改造大肠杆菌提高环氧角鲨烯及三萜类化合物产量提供借鉴和参考。
参考文献
[1] | Liu H, Zhang Y, Sun SQ, et al. Efficacy of terpenoid in attenuating aortic atherosclerosis in apolipoprotein-E deficient mice: a meta-analysis of animal studies. Biomed Res Int, 2019, 2019: 2931831. |
[2] | Shi Z, Chen Y, Lu C, et al. Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res, 2018, 136: 172-180. DOI:10.1016/j.phrs.2018.09.002 |
[3] | Hua SY, Ma MY, Fei XY, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis. Int Immunopharmacol, 2019, 68: 145-155. DOI:10.1016/j.intimp.2019.01.002 |
[4] | Zhang YY, Li LY, Qi C, et al. Glycyrrhizin alleviates Con A-induced hepatitis by differentially regulating the production of IL-17 and IL-25. Biomed Pharmacother, 2019, 110: 692-699. DOI:10.1016/j.biopha.2018.12.025 |
[5] | Kashyap D, Sharma A, Tuli HS, et al. Molecular targets of celastrol in cancer: recent trends and advancements. Crit Rev Oncol, 2018, 128: 70-81. DOI:10.1016/j.critrevonc.2018.05.019 |
[6] | Venkatesha SH, Dudics S, Astry B, et al. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis, 2016, 74(6): ftw059. DOI:10.1093/femspd/ftw059 |
[7] | Cao L, Zhang X, Cao FF, et al. Inhibiting inducible miR-223 further reduces viable cells in human cancer cell lines MCF-7 and PC3 treated by celastrol. BMC Cancer, 2015, 15: 873. DOI:10.1186/s12885-015-1909-2 |
[8] | 张倩茹, 高颖, 李群芳, 等. 杜仲叶环烯醚萜类化合物提取工艺研究. 安徽农业科学, 2010, 38(8): 4051-4052. Zhang QR, Gao Y, Li QF, et al. Study on the extraction of iridoids from Eucommia ulmoids leaves. J Anhui Agric Sci, 2010, 38(8): 4051-4052 (in Chinese). DOI:10.3969/j.issn.0517-6611.2010.08.081 |
[9] | 常春, 赵亚南, 曾爱国. 环糊精水提法提取积雪草中的三萜类化合物. 西北药学杂志, 2018, 33(4): 432-435. Chang C, Zhao YN, Zeng AG. Extraction of triterpenoids from Centella asiatica by cyclodextrin aqueous extraction. Northwest Pharm J, 2018, 33(4): 432-435 (in Chinese). DOI:10.3969/j.issn.1004-2407.2018.04.002 |
[10] | Jackson H, Braun CL, Ernst H. The chemistry of novel xanthophyll carotenoids. Am J Cardiol, 2008, 101(10a): 50D-57D. |
[11] | Surendra K, Corey EJ. A short enantioselective total synthesis of the fundamental pentacyclic triterpene lupeol. J Am Chem Soc, 2009, 131(39): 13928-13929. DOI:10.1021/ja906335u |
[12] | Yang JM, Zhao G, Sun YZ, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour Technol, 2012, 104: 642-647. DOI:10.1016/j.biortech.2011.10.042 |
[13] | Wang CL, Zada B, Wei GY, et al. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour Technol, 2017, 241: 430-438. DOI:10.1016/j.biortech.2017.05.168 |
[14] | Wang CL, Yoon SH, Jang HJ, et al. Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng, 2011, 13(6): 648-655. DOI:10.1016/j.ymben.2011.08.001 |
[15] | Anthony JR, Anthony LC, Nowroozi F, et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4, 11-diene. Metab Eng, 2009, 11(1): 13-19. DOI:10.1016/j.ymben.2008.07.007 |
[16] | Huang QL, Roessner CA, Croteau R, et al. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem, 2001, 9(9): 2237-2242. DOI:10.1016/S0968-0896(01)00072-4 |
[17] | Yang JM, Guo LZ. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact, 2014, 13(1): 160. DOI:10.1186/s12934-014-0160-x |
[18] | 金应福, 韩莉, 张莎莎, 等. 通过番茄红素环化酶的优化构建β-胡萝卜素高产菌株. 生物工程学报, 2017, 33(11): 1814-1826. Jin YF, Han L, Zhang SS, et al. Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production. Chin J Biotech, 2017, 33(11): 1814-1826 (in Chinese). |
[19] | Yoon SH, Lee SH, Das A, et al. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol, 2009, 140(3-4): 218-226. DOI:10.1016/j.jbiotec.2009.01.008 |
[20] | Ghimire GP, Lee HC, Sohng JK. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol, 2009, 75(22): 7291-7293. DOI:10.1128/AEM.01402-09 |
[21] | Katabami A, Li L, Iwasaki M, et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng, 2015, 119(2): 165-171. DOI:10.1016/j.jbiosc.2014.07.013 |
[22] | Xu W, Yao J, Liu LJ, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. Biotechnol Biofuels, 2019, 12: 68. DOI:10.1186/s13068-019-1415-x |
[23] | Meng YH, Shao XX, Wang Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli. Biotechnol Bioeng, 2020, 117(11): 3499-3507. DOI:10.1002/bit.27511 |
[24] | Yang LY, Wang CL, Zhou J, et al. Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production. Microb Cell Fact, 2016, 15: 14. DOI:10.1186/s12934-016-0409-7 |
[25] | Landl KM, Kl?sch B, Turnowsky F. ERG1, encoding squalene epoxidase, is located on the right arm of chromosome Ⅶ of Saccharomyces cerevisiae. Yeast, 1996, 12(6): 609-613. DOI:10.1002/(SICI)1097-0061(199605)12:6<609::AID-YEA949>3.0.CO;2-B |
[26] | Kim IK, Yim HS, Kim DW, et al. Crystallization and preliminary X-ray crystallographic analysis of a ytfG gene product from Escherichia coli. Acta Crystallogr D Biol Crystallogr, 2004, 60(pt 2): 365-367. |
[27] | Adams MA, Iannuzzi P, Jia Z. MdaB from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005, 61(pt 2): 235-238. |
[28] | Campbell ZT, Baldwin TO. Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in Escherichia coli. J Biol Chem, 2009, 284(13): 8322-8328. DOI:10.1074/jbc.M808977200 |
[29] | Bamford VA, Armour M, Mitchell SA, et al. Preliminary X-ray diffraction analysis of YqjH from Escherichia coli: a putative cytoplasmic ferri-siderophore reductase. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008, 64(pt 9): 792-796. |
[30] | Driggers CM, Dayal PV, Ellis HR, et al. Crystal structure of Escherichia coli SsuE: defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily. Biochemistry, 2014, 53(21): 3509-3519. DOI:10.1021/bi500314f |
[31] | Andrade SL, Patridge EV, Ferry JG, et al. Crystal structure of the NADH: quinone oxidoreductase WrbA from Escherichia coli. J Bacteriol, 2007, 189(24): 9101-9107. DOI:10.1128/JB.01336-07 |
[32] | Sakakibara J, Watanabe R, Kanai Y, et al. Molecular cloning and expression of rat squalene epoxidase. J Biol Chem, 1995, 270(1): 17-20. DOI:10.1074/jbc.270.1.17 |
[33] | Nakano C, Motegi A, Sato T, et al. Sterol biosynthesis by a prokaryote: first in vitro identification of the genes encoding squalene epoxidase and lanosterol synthase from Methylococcus capsulatus. Biosci Biotechnol Biochem, 2007, 71(10): 2543-2550. DOI:10.1271/bbb.70331 |
[34] | Nagumo A, Kamei T, Sakakibara J, et al. Purification and characterization of recombinant squalene epoxidase. J Lipid Res, 1995, 36(7): 1489-1497. DOI:10.1016/S0022-2275(20)39736-4 |
[35] | Dinkova-Kostova AT, Talalay P. NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys, 2010, 501(1): 116-123. DOI:10.1016/j.abb.2010.03.019 |
[36] | Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (respiratory complexⅠ). Biochim Biophys Acta, 2016, 1857(3): 214-223. DOI:10.1016/j.bbabio.2015.12.004 |
[37] | Li DS, Zhang Q, Zhou ZJ, et al. Heterologous biosynthesis of triterpenoid dammarenediol-Ⅱ in engineered Escherichia coli. Biotechnol Lett, 2016, 38(4): 603-609. DOI:10.1007/s10529-015-2032-9 |
[38] | Arnesen JA, Kildegaard KR, Cernuda Pastor M, et al. Yarrowia lipolytica strains engineered for the production of terpenoids. Front Bioeng Biotechnol, 2020, 8: 945. DOI:10.3389/fbioe.2020.00945 |