1. 厦门大学 公共卫生学院,福建 厦门 361100;
2. 福建医科大学附属厦门弘爱医院 (筹),福建 厦门 361100;
3. 厦门大学附属中山医院,福建 厦门 361004
收稿日期:2019-12-25;接收日期:2020-03-16
基金项目:福建省卫计委青年科研课题(No. 2014-2-69)资助
摘要:心力衰竭(心衰)的发病率正随着人口老龄化的加速而显著上升,目前仍然是一个重大的公共健康问题。尽管近年来在心衰治疗方面取得了显著成效,但患者的生存率依旧很低,预后差,确诊心衰后5年内死亡率高达50%。如果能够对心衰进行快速有效的诊断并按危险程度进行合理分层,将为临床医生制定治疗方案提供重要的参考依据。生物标志物在心衰的诊断、疗效评估及预后判断方面都具有重要的意义。心力衰竭是一种复杂的疾病,涉及多种生理病理过程。心力衰竭时,神经内分泌系统被激活,同时伴随着血容量和心室壁压力增加,心室肌细胞分泌NT-proBNP/BNP,因此,其可作为心衰诊断和预后生物标志物。然而血浆中NT-proBNP/BNP易受到年龄、性别、体型、左室肥大、心动过速、右心室过载、低氧血症、肾脏功能等诸多因素影响。sST2作为一种新型心力衰竭标志物,近年来备受关注,它不仅能够反映心肌纤维化程度并预测是否发生心室重构,且不受年龄、性别、肾功能等因素的影响,同时具有更低的参考变化值和个体指数,更适合用于连续监测和指导治疗,是评价心力衰竭的理想指标之一。文中对近年来sST2在心衰诊断和预后方面的研究进展进行总结归纳,并对其发展趋势进行展望。
关键词:心力衰竭可溶性生长刺激表达基因2蛋白诊断预后
Application value of serum sST2 in diagnosis and prognosis of heart failure
Shuizhen Huang1, Qingchun Wei1, Xinyi Zhi2, Jiajia Wang3, Zhongying Zhang1,2
1. School of Public Health, Xiamen University, Xiamen 361100, Fujian, China;
2. Xiamen Humanity Hospital, Fujian Medical University, Xiamen 361100, Fujian, China;
3. Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, China
Received: December 25, 2019; Accepted: March 16, 2020
Supported by: Youth Foundation Project of Fujian Provincial Health Department (No. 2014-2-69)
Corresponding author: Zhongying Zhang. Tel: +86-592-5262399; E-mail: zzy11603@163.com.
Abstract: The incidence of heart failure (HF) increases significantly as people age. HF remains a major concern in public health. Although remarkable achievements have been made to treat heart failure in recent years, the survival rate of patients is still very low and the prognosis is poor. The mortality rate within 5 years after the diagnosis of heart failure is up to 50%. If we can quickly and effectively diagnose heart failure and reasonably stratify according to the risk, it will provide a solid foundation for clinicians to formulate treatment plans. Biomarkers play an important role in the diagnosis, curative effect evaluation and prognosis of heart failure. Heart failure is a complex disease in which various pathophysiological processes are involved over time. When heart failure occurs, neuroendocrine system is activated. With the increase of blood volume and ventricular wall pressure, ventricular myocytes secrete NT-proBNP/BNP. Therefore, NT-proBNP/BNP can be used as a biomarker for diagnosis and prognosis of heart failure. However, NT-proBNP/BNP in plasma is easily affected by many factors such as age, sex, body type, left ventricular hypertrophy, tachycardia, right ventricular overload, hypoxemia, and kidney function. As a novel marker of heart failure, sST2 has attracted much attention in recent years. It can reflect the degree of myocardial fibrosis and predict whether ventricular remodeling will occur. It is worth noting that sST2 is not affected by age, gender and renal function and other factors. Also, with low reference change values and individuality index values, sST2 seems to be the best candidate for monitoring and guided therapy. In short, sST2 is one of the ideal indicators to evaluate heart failure. This review summarizes the research progress of sST2 in the diagnosis and prognosis of heart failure in recent years, and provides perspectives for its future development.
Keywords: heart failuresoluble growth stimulation expressed gene 2 proteindiagnosisprognosis
心力衰竭(心衰)是心血管疾病严重阶段的临床综合征,心肌收缩力下降导致心排血量不足,是全球发病率呈增长趋势的心血管疾病。根据心衰发作时间和进展的速度,可分为急性心衰和慢性心衰。急性心衰的患者起病急、进展快,而慢性心衰是随着疾病的不断进展、代偿性地出现心衰的症状。根据射血分数不同可分为射血分数降低的心衰(HF-REF)和射血分数保留的心衰(HF-PEF)[1]。近些年来,HF-REF得到有效控制,预后明显得到了改善,但目前没有哪种特定治疗方法有效防治HF-PEF,且随着年龄的增加,HF-PEF患者患病率快速增加,老年人口将成为社会沉重负担[2]。由于心衰的临床表现复杂且物理检查可能导致部分患者误诊,实现快速准确诊断心衰仍然面临巨大挑战,而近些年研究结果显示生物标志物在心衰的诊断及预后方面具有无可替代的优势。利钠肽是心衰诊断最重要的标志物,但近年来研究表明其检测结果受肾小球滤过率、年龄、性别等[3]多种因素影响。2013年,美国心脏病学会基金会/心脏协会(ACCF/AHA)心衰管理指南中指出,作为心肌纤维化标志物,sST2不仅可以预测心衰患者入院率和死亡率,同时还能在利钠肽之外提供额外预后信息。sST2在慢性心衰的危险分层中亦有重要辅助作用,推荐类别为Ⅱ a类,B级;在对急性心衰患者推荐类别为Ⅱ b类,A级[4],且其不受肾功能影响,因此,对sST2水平进行检测,可为心衰患者治疗提供新的信息。本文综述了sST2在心衰诊断及预后方面的研究进展,以期为临床诊疗提供新的手段,让更多患者受益。
1 sST2的生物学特征与功能1.1 sST2的生物学特征生长刺激表达基因2蛋白(Growth stimulation expressed gene 2,ST2)是1989年Tominaga等研究G0/G1期转变机制时在BALB/c-3T3细胞中发现[5],属于白细胞介素-1 (Interleukin-1,IL-1)受体家族,故又称为1型白细胞介素-1受体(IL1RL-1)。人ST2基因位于染色体2q12,约58 kb,有4种异构体,其中两种形式直接参与心血管疾病的发生发展,即跨膜型形式(ST2L)和可溶性形式(sST2)。ST2L主要在心肌细胞和成纤维细胞的细胞膜上表达,含有跨膜片段和一个Toll /IL-1受体(TIR)及胞内结构域,此外ST2L还在2型辅助性T细胞表面表达,发挥免疫调节功能。sST2主要由肺泡细胞和血管壁细胞产生,心脏成纤维细胞和心肌细胞也能产生少部分,其表达很大程度上受机械牵拉、炎症、促纤维化刺激的诱导,但目前心衰患者血清中sST2来源尚未明确[6]。有研究表明,脂多糖(LPS)刺激外周血单核细胞产生的炎症细胞因子如IL-1α、IL-1β、IL-6、TNF-α通过NF-κB依赖性机制刺激肺上皮细胞和心肌细胞增加sST2的产生[7]。因此,当人类免疫系统面临内源性危险信号如心肌梗塞、细胞坏死时,炎症因子刺激心肌细胞大量分泌sST2。体外实验表明,机械应力及IL-1β处理培养的心肌细胞后,sST2 mRNA表达量显著上升,并且心肌梗死后小鼠血液中sST2浓度升高[8]。与ST2L相比,sST2缺失跨膜片段及胞内结构域。ST2L和sST2亚型来源于双启动子系统驱动mRNA差异表达[9]。
1.2 sST2的生物学功能2002年Weinberg等首次报道了ST2在心脏疾病中发挥作用,研究显示当发生心肌肥大、心肌纤维化时sST2水平升高。小鼠实验中,sST2在急性心肌梗死1 d后表达显著上调[8]。对于这种现象的机制人们无法作出合理解释,因为最初发现ST2时,人们仅了解到这是一种与IL-1受体具有相似结构的“孤儿受体”,直到2005年Schmitz等研究发现了IL-33,即ST2L的功能性配体,才使得世人对ST2的生物学功能有了全新的认识[10]。IL-33主要在基质细胞中表达,如成纤维细胞、平滑肌细胞、上皮细胞和内皮细胞等[11-12],体外实验证明IL-33能够缓解心肌细胞肥大及发生纤维化[7]。一方面,当机体遭受病原体侵袭,损伤应激,细胞坏死时,全长且有活性的IL-33作为“信使”将危险信号传递给免疫细胞表面的ST2受体,刺激炎症基因转录表达细胞因子和趋化因子,参与炎症反应和免疫应答反应;另一方面,细胞凋亡过程中降解失活的IL-33可以避免IL-33介导的炎症作用对宿主细胞造成损伤。此外,在没有细胞坏死的情况下,机械应力可诱导全长IL-33分泌,因此表明IL-33既是炎症反应因子,又是机械响应因子[13]。IL-33/ST2L信号通路是一种机械响应性心脏保护信号系统。IL-33受体复合物是由ST2L和IL-1受体辅助蛋白(IL-1RAcP)组成,IL-33/ST2L信号通路的激活即是IL-33通过结合ST2L和IL-1RAcP受体复合物的胞外免疫球蛋白结构引起TIR结构域的二聚化,激活MAPK途径及NF-κB信号通路,最终发挥减轻心肌纤维化、抗心肌肥厚及细胞凋亡、改善心肌功能等心脏保护作用。当心肌细胞受到机械牵拉时,则会产生大量sST2,其作为“诱骗受体”,会竞争性地结合IL-33,从而抑制IL-33/ST2L信号通路,降低心肌保护作用,进而发生心肌重塑和功能障碍[7]。随后几年间,全球的研究团队纷纷证实ST2参与心脏疾病的发病过程[6, 14-19]。
2 血清sST2的检测方法研究表明,sST2相比于利钠肽具有更低的参考变化值和个体指数,更适合用于心衰患者的连续监测及疗效判断[20-21]。目前sST2的检测主要采用酶联免疫分析法,方法比较研究发现,不同的试剂盒检测血浆中sST2浓度存在较大的差异。因此,不同的试剂盒检测得到的sST2结果彼此之间是不一致的,不同方法得到的检测结果不能直接进行比较[22]。造成这种差异性的原因可能是由于不同试剂盒所使用的抗体所识别的抗原表位不一样,标准品的纯化过程存在差异,以及反应体系不同等[22],且目前国际上缺少sST2标准品。Presage? ST2 Assay Kit是美国FDA于2012年批准用于评估慢性心衰患者预后及心衰或急性冠状动脉综合征患者的危险分层的试剂盒。因此,Presage? ST2 Assay Kit试剂盒在临床研究中使用较广泛,该试剂盒具有较高的灵敏度和精确度(CV < 5%),具有更宽的检测线性范围,能100%检测到人群中sST2水平[23]。对sST2稳定性进行分析发现,其在室温条件下能够稳定保持48 h,4 ℃条件下至少稳定保持7 d,–20 ℃和–80 ℃至少保持1.5年[24-25]。其单一阈值为35 ng/mL,能预测死亡或心脏移植不良事件[26],95%的正常受试者的ST2水平低于该阈值。尽管健康男性的sST2水平高于健康女性[25, 27],但造成这种性别差异的原因尚未探明,一种可能性是sST2合成或分泌(至少部分)受雄激素控制。
3 sST2在心衰诊断方面的应用近年来研究显示sST2在心衰的诊断方面拥有广阔的发展前景和应用价值。Huang等进行荟萃分析患有各种类型心衰或(并)伴随高血压、肺部栓塞等病人,对比了sST2与和肽素(Copeptin)、高敏肌钙蛋白T (Hs-cTnT)、半乳糖凝集素-3 (Galectin-3)、肾上腺髓质中段肽(MR-proADM)、心房利钠利尿肽原(MR-proANP)这5种生物标志物心衰诊断价值,结果表明sST2在心衰的诊断中可能是有益的[28]。而Mueller等通过对急诊科中呼吸困难患者进行sST2的检测,以确定sST2对急性心力衰竭的诊断价值,发现尽管心源性呼吸困难患者的sST2明显高于非心源性呼吸困难患者,但绘制ROC曲线分析sST2诊断心衰能力AUC仅为0.63,而BNP为0.92,同时联合BNP检测并不能增加BNP的心衰诊断能力[29],因此对于心衰的诊断,sST2并没有比BNP占优势[30-31]。
肺炎、慢性阻塞性肺病及败血症患者中,sST2浓度显著升高,但在肾功能障碍组与健康对照组中并无差异[32],表明当心衰患者同时存在其他炎症相关疾病如肺炎、败血症等时,利钠肽更适合作为诊断标志物。此外,研究显示在肾功能障碍导致的心衰患者中,Hs-cTnT[33]、Copeptin[34]、Galectin-3[35]、MR-proANP[36]、MR-proADM[37]的含量会有所升高,但sST2则表现出不受肾功能影响的特性。中国医学科学院阜外医院收集了2009–2012年诊断为心衰的1 161例患者,根据eGFR分为两组(eGFR≤60 mL/min/1.73 m2组vs eGFR > 60 mL/min/1.73 m2),结果表明eGFR与sST2没有存在显著相关性[38],其他研究也证明了这个结论[39-41]。因此我们应重点关注sST2在肾功能障碍伴心衰患者的诊断方面的应用。Bayes-Genis等报道对于更严重心衰(NYHA Ⅲ-Ⅳ)患者,更低水平的eGFR对NT-proBNP的影响更大,因此,sST2表现出了其独特的优势[39]。终末期肾病(ESRD)是公共卫生中的一个重要问题,通常伴随心衰发生发展,生物标志物的联合使用对于预测血液透析患者发生心血管事件具有重要意义。小分子量的NT-proBNP (8.4 kDa)受肾小球滤过率或血液透析过滤疗法(HDF)影响,相反,sST2具有较大的分子量,约58 kDa,研究证明在ESRD患者中,HDF前后血浆中sST2浓度没有统计学差异[42],表明生物标志物联合使用应用于心衰的诊断具有重要价值。
临床上诊断HF-PEF主要根据患者临床特征及超声心动图检查进行评价,同时NT-proBNP可对HF-PEF进行早期诊断及病情评估。但HF-PEF患者往往存在更多的基础性疾病,如高血压、糖尿病等,同时伴有肾功能损伤。血清中NT-proBNP浓度易受到年龄、肾脏功能等因素影响,单独对HF-PEF患者病情评估存在局限性。中国****研究表明sST2联合NT-proBNP大大提高对HF-PEF患者诊断和预后评估能力,尤其是预测全因死亡效果更明显[43]。Frioes等的研究表明sST2联合BNP可明显提高HF-PEF患者预后预测的准确性[44]。sST2的应用将有益于HF-PEF患者,它可以反映患者炎症状态,且不受共患病的影响[45]。
4 sST2在心衰的风险评估和预后价值中的作用4.1 sST2与急性心衰的危险分层在一项针对346位急性心衰患者的研究中,对受试者入院时进行了生物标志物检测并对心衰严重程度进行了评估,结果显示sST2与NYHA分级、左心室射血分数(r=–0.134)、肌酐清除率(r=–0.224)、BNP (r=0.293)、NT-proBNP (r=0.413)、C-反应蛋白(r=0.429)具有一定的相关性。同时心衰患者死亡率随着sST2的十分位数增加,在第十分位数时死亡率超过了50%。当sST2和BNP都升高时,生存曲线分析发现患者死亡率达到最高(42%)[46]。sST2在慢性心力衰竭中常用的风险阈值为35 ng/mL,以此阈值预测急性心衰患者一年死亡情况,低sST2患者一年内死亡率为9.0%,而高sST2为19.4%,表明sST2作为预后标志物的可能性[47]。也有文章提出更高的风险阈值,如49 ng/mL[46]和65 ng/mL[17]等。在一项针对急性心力衰竭患者荟萃分析中,sST2的平均值为68 ng/mL[48],急性心力衰竭的sST2平均水平高于慢性心力衰竭。因此,有****提出应为急性心力衰竭另设定一个最佳的风险阈值。
4.2 sST2与急性心衰的预后sST2不仅能对急性心衰进行危险分层,同时可以提供相应的预后信息。对858位急性心衰患者血浆中sST2水平分别在基线、48–72 h、30 d后进行检测,单因素分析发现较高水平的sST2与180 d内死亡风险相关(风险比:HR=2.21;随访HR=2.64),但在调整临床协变量以及模型中加入NT-proBNP后,sST2的预后价值减弱(HR= 1.29)。同时,持续高水平的sST2 (> 60 ng/mL)患者具有更高的死亡率(调整变量后HR=2.91),表明连续监测sST2水平相比于单独检测基线水平sST2具有更显著的预后价值[49]。心衰患者住院治疗期间进行多个时间点检测结果显示,较低水平的sST2浓度预示更低的死亡率及机体状态改善,相比之下,随访期间sST2水平持续升高的患者死亡率更高。在一项共纳入4 835名急性心衰患者的荟萃分析中,分别检测这些患者入院和出院时体内sST2的水平,中位随访时间为13.5个月,研究终点为各种原因造成的死亡、心血管死亡以及因心衰再入院,sST2通过log2转换,计算风险比,结果表明入院和出院时sST2水平对全因死亡、心血管死亡具有预测价值,然而只有出院时的sST2水平能够预测心衰再入院[48]。因此,对sST2进行连续检测能够帮助临床及时调整治疗方案,为患者个性化治疗提供更合适的方案[50-51]。
4.3 sST2与慢性心衰的危险分层在一项针对慢性心衰患者的荟萃分析中,最终共纳入针对全因死亡的7项研究,共计6 372名患者;针对心血管死亡的5项研究,共计5 051名患者。sST2作为预测因子能够预测一年全因死亡和心血管死亡,风险比分别为1.75 (95%CI:1.37–2.22)和1.79 (95%CI:1.22–2.63)[52]。在4 268名慢性心衰患者研究中,中位年龄为68岁,中位随访时间为2.4年,以sST2作为独立预测因子预测全因死亡、心血管死亡和心衰再入院,最佳sST2临界值为28 ng/mL,生存曲线分析其能够很好地进行危险分层,此外,当预后分析模型中再加入sST2、NT-ProBNP、hs-TnT这三者时,sST2每增加一倍,全因死亡、心血管死亡及心衰再入院风险分别增加26%、25%、30%。此外研究结果显示,sST2与年龄、性别、体质指数、肾功能等无关[53],其他研究也证明了这个结论[39, 54]。
4.4 sST2与慢性性心衰的预后为研究sST2水平与死亡风险或心脏移植间是否有联系,对1 141名慢性心衰的门诊病人进行了多中心的前瞻性队列研究,中位随访时间为2.8年,研究终点为死亡或心脏移植,其中共有267名患者达到了研究终点。研究发现与最低三分位数(≤22.3 ng/mL)相比,最高sST2三分位数(> 36.3 ng/mL)的患者出现不良结局的风险显著增加,多变量调整后HR=1.9 (95%CI:1.3–2.9)。受试者工作区曲线分析,虽然sST2效果与NT-proBNP相当,但都不如美国西雅图心衰模型理想。将sST2、NT-proBNP、美国西雅图心衰模型三者联合时,有14.9%的患者重新获得了更为适合的风险等级评估[26]。在慢性心衰患者中,sST2、GDF-15及Hs-cTnT独立于临床变量和NT-proBNP,在基线水平均能提供独立预后信息,但只有连续对sST2进行监测才能实现在基线水平上提供额外的预后信息和预测左心室功能变化[55]。更早的研究报道显示sST2基线水平与BNP (r=0.3)呈正相关,此外,包括BNP在内的多因素回归模型中,sST2仍可作为一个独立的预后风险因子来预测死亡率和心脏移植[56]。
5 sST2与其他生物标志物的联合应用BNP和NT-proBNP是目前生物标志物中诊断心衰的“金标准”。多个研究表明,体质指数(BMI)对BNP和NT-proBNP影响较大[57-58]。BNP半衰期较短(22 min),通过不同的机制进行酶的催化作用清除,相反,NT-proBNP则有更长的半衰期(1–2 h)[59],所以这两者虽然分泌量为1︰1,但NT-proBNP循环量较高且波动较慢,显然NT-proBNP受肾功能影响似乎更大[60-62]。Galectin-3和sST2都是反映心肌纤维化标志物,而Galectin-3也和肾功能相关[63-64],而sST2不受体质指数、肾功能等的影响[38-40, 53-54]。众所周知,常规应用病史和体格检查难以对心衰进行诊断和治疗,生物标志物的联合使用能够提高诊断和预后的准确性。心衰发生发展过程中涉及复杂的病理生理学途径,NPs是心脏容量超负荷和充血的反映,sST2反映心肌纤维化、炎症的发生和心肌重塑。在一项针对315名慢性心衰患者为期12个月的随访研究中,发现sST2与NT-proBNP、Gal-3其检测值高于所推荐的临界值(NT-proBNP > 1 000 pg/mL[65]、sST2 > 34 ng/mL[12]、galectin-3 > 17.8 ng/mL[66]),且这三者的单因素回归分析以及联合这3个标志物的多变量分析都能预测心血管死亡和(或)心衰的发生。与BIOSTAT-CHF研究对比,生物标志物得分(基于以上三者生物标志物的临界值来评分,分值范围为0–3分)与其具有相似的C-指数(0.78 vs 0.70),表明基于这3种生物标志物的组合,可建立一种简单的预后方法。同时,生物标志物得分加入BIOSTAT-CHF模型后,NRI (Net reclassification improvement,重分类改善指标)为0.118,IDI (Integrated discrimination improvement,综合判别改善指数)为0.43,因此提示了sST2、NT-proBNP、galectin-3这3种生物标志物联合使用可应用于慢性心衰患者危险分层[67]。
6 总结与展望当心衰患者心肌细胞和心肌成纤维细胞受到机械性拉伸时,可引起IL-33和sST2增加,参与IL-33/ST2信号通路。IL-33/ST2L信号通路作为一种新型的生物力学途径,是心肌内成纤维细胞-心肌细胞信息交流的新机制,参与心室重塑过程,具有心脏保护作用。短期的IL-33治疗可以阻止心肌细胞凋亡,减少不良炎症反应的发生,改善心血管预后[68];醛固酮受体拮抗剂可以降低sST2水平,使得IL-33表达量升高,减少心肌梗死后的炎症反应和纤维化的发生[69],因此干扰IL-33/ST2信号通路可能成为心衰治疗靶标[70, 71]。
sST2在多种疾病中有不同程度升高,如炎症疾病和心脏疾病等[30, 41, 72],因此在特定疾病的诊断中sST2特异性不高。但是近年研究表明,sST2在急、慢性心衰危险分层和预后评估中有着巨大的应用潜力。临床结果证明,sST2与心衰严重程度及不良预后密切相关,与已知的临床变量、已建立的心脏标志物(包括利钠肽和心肌肌钙蛋白)及其他新兴标志物相比,sST2可以独立提供额外有价值的预后信息。此外,sST2具有不受肾功能、体质指数、年龄等等因素影响的特点,对肾功能障碍伴心衰患者的诊断具有重要价值,同时,sST2的应用将有益于HF-PEF患者。另外,sST2联合其他的生物标志物能够进一步提高对心衰诊断及预后判断的准确性。依据目前研究成果,sST2的最佳应用模式是联合其他生物标志物一同发挥对心衰危险分级和预后判断的功能。相比于BNP/NT-proBNP,sST2具有更低的参考变化值,表明可通过对sST2进行连续性监测更能评估和反映患者临床状态的改变。sST2能够用于指导心衰患者危险分层,无论是单独检测还是联合利钠肽及肌钙蛋白,并有可能在此基础上用于指导心衰的治疗,因此未来较大的挑战是探究sST2在指导心衰管理方面是否能够对患者症状和疾病改善产生积极的影响。目前关于sST2检测方法的不足阻碍了其在临床常规中的开展与应用,确立合适的检测阈值也是讨论的重点。因此,仍需研究者们锲而不舍地探索提供更多的临床数据资料支持。期待在未来可以建立sST2自动化检测平台,推动其在临床中的应用和发展。
参考文献
[1] | Heart Failure Group of Chinese Society of Cardiology of Chinese Medical, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2018. Chin Cardiol, 2018, 46(10): 760-789 (in Chinese). 中华医学会心血管病学分会心力衰竭学组, 等. 中国心力衰竭诊断和治疗指南2018. 中华心血管病杂志, 2018, 46(10): 760-789. |
[2] | Chen H. Clinical features and prognostic factors of heart failure with preserved ejection fraction[D]. Chengdu: Chengdu Medical College, 2018 (in Chinese). 陈宏.射血分数保留心力衰竭的临床特征及预后因素分析[D].成都: 成都医学院, 2018. |
[3] | Hill SA, Booth RA, Santaguida PL, et al. Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev, 2014, 19(4): 421-438. |
[4] | Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation, 2013, 128(16): 1810-1852. DOI:10.1161/CIR.0b013e31829e8807 |
[5] | Tominaga SI. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett, 1989, 258(2): 301-304. DOI:10.1016/0014-5793(89)81679-5 |
[6] | Pascual-Figal DA, Januzzi JL. The biology of ST2: the International ST2 Consensus Panel. Am J Cardiol, 2015, 115(S7): 3B-7B. |
[7] | Sanada S, Hakuno D, Higgins LJ, et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest, 2007, 117(6): 1538-1549. DOI:10.1172/JCI30634 |
[8] | Weinberg EO, Shimpo M, de Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 2002, 106(23): 2961-2966. DOI:10.1161/01.CIR.0000038705.69871.D9 |
[9] | Iwahana H, Yanagisawa K, Ito-Kosaka A, et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur J Biochem, 1999, 264(2): 397-406. DOI:10.1046/j.1432-1327.1999.00615.x |
[10] | Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, 23(5): 479-490. DOI:10.1016/j.immuni.2005.09.015 |
[11] | Li GZ, Zhang XC. Research progress of IL-33/ST2 signal pathway and cardiovascular diseases. Shandong Medical Journal, 2013, 53(29): 93-95 (in Chinese). 李冠臻, 张新超. IL-33/ST2信号通路与心血管疾病研究进展. 山东医药, 2013, 53(29): 93-95. |
[12] | Mueller T, Dieplinger B. The Presage? ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn, 2013, 13(1): 13-30. |
[13] | Kakkar R, Hei H, Dobner S, et al. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem, 2012, 287(9): 6941-6948. DOI:10.1074/jbc.M111.298703 |
[14] | Braunwald E. Biomarkers in heart failure. N Engl J Med, 2008, 358(20): 2148-2159. DOI:10.1056/NEJMra0800239 |
[15] | Sabatine MS, Morrow DA, Higgins LJ, et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation, 2008, 117(15): 1936-1944. DOI:10.1161/CIRCULATIONAHA.107.728022 |
[16] | Eggers KM, Armstrong PW, Califf RM, et al. ST2 and mortality in non-ST-segment elevation acute coronary syndrome. Am Heart J, 2010, 159(5): 788-794. DOI:10.1016/j.ahj.2010.02.022 |
[17] | Pascual-Figal DA, Manzano-Fernández S, Boronat M, et al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur J Heart Fail, 2011, 13(7): 718-725. DOI:10.1093/eurjhf/hfr047 |
[18] | Broch K, Ueland T, Nymo SH, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail, 2012, 14(3): 268-277. |
[19] | Zhang HF, Xie SL, Chen YX, et al. Altered serum levels of IL-33 in patients with advanced systolic chronic heart failure: correlation with oxidative stress. J Transl Med, 2012, 10: 120. DOI:10.1186/1479-5876-10-120 |
[20] | Wu AHB, Wians F, Jaffe A. Biological variation of galectin-3 and soluble ST2 for chronic heart failure Implication on interpretation of test results. Am Heart J, 2013, 165(6): 995-999. DOI:10.1016/j.ahj.2013.02.029 |
[21] | Piper S, deCourcey J, Sherwood R, et al. Biologic Variability of Soluble ST2 in Patients With Stable Chronic Heart Failure and Implications for Monitoring. Am J Cardiol, 2016, 118(1): 95-98. |
[22] | Mueller T, Zimmermann M, Dieplinger B, et al. Comparison of plasma concentrations of soluble ST2 measured by three different commercially available assays: the MBL ST2 assay, the Presage ST2 assay, and the R & D ST2 assay. Clin Chim Acta, 2012, 413(19/20): 1493-1494. |
[23] | Coglianese EE, Larson MG, Vasan RS, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem, 2012, 58(12): 1673-1681. DOI:10.1373/clinchem.2012.192153 |
[24] | Dieplinger B, Egger M, Poelz W, et al. Long-term stability of soluble ST2 in frozen plasma samples. Clin Biochem, 2010, 43(13-14): 1169-1170. |
[25] | Dieplinger B, Januzzi JL, Jr., Steinmair M, et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma--the PresageTM ST2 assay. Clin Chim Acta, 2009, 409(1/2): 33-40. |
[26] | Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail, 2011, 4(2): 180-187. |
[27] | Lu J, Snider JV, Grenache DG. Establishment of reference intervals for soluble ST2 from a United States population. Clin Chim Acta, 2010, 411(21/22): 1825-1826. |
[28] | Huang Z, Zhong J, Ling Y, et al. Diagnostic value of novel biomarkers for heart failure: A meta-analysis. Herz, 2018, 45(1): 65-78. |
[29] | Mueller T, Gegenhuber A, Leitner I, et al. Diagnostic and prognostic accuracy of galectin-3 and soluble ST2 for acute heart failure. Clin Chim Acta, 2016, 463: 158-164. DOI:10.1016/j.cca.2016.10.034 |
[30] | Henry-Okafor Q, Collins SP, Jenkins CA, et al. Soluble ST2 as a diagnostic and prognostic marker for acute heart failure syndromes. Open Biomark J, 2012, 2012(5): 1-8. |
[31] | Januzzi JL, Jr., Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol, 2007, 50(7): 607-613. DOI:10.1016/j.jacc.2007.05.014 |
[32] | Mueller T, Leitner I, Egger M, et al. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta, 2015, 445: 155-160. DOI:10.1016/j.cca.2015.03.033 |
[33] | Chung JZY, Jones GRD. Effect of renal function on serum cardiac troponin T--Population and individual effects. Clin Biochem, 2015, 48(12): 807-810. DOI:10.1016/j.clinbiochem.2015.05.004 |
[34] | Ponte B, Pruijm M, Ackermann D, et al. Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol, 2015, 26(6): 1415-1425. DOI:10.1681/ASN.2014030260 |
[35] | Zamora E, Lupón J, De Antonio M, et al. Renal function largely influences Galectin-3 prognostic value in heart failure. Int J Cardiol, 2014, 177(1): 171-177. |
[36] | Chenevier-Gobeaux C, Guerin S, André S, et al. Midregional pro-atrial natriuretic peptide for the diagnosis of cardiac-related dyspnea according to renal function in the emergency department: a comparison with B-type natriuretic peptide (BNP) and N-terminal proBNP. Clin Chem, 2010, 56(11): 1708-1717. DOI:10.1373/clinchem.2010.145417 |
[37] | Peacock WF. Novel biomarkers in acute heart failure: MR-pro-adrenomedullin. Clin Chem Lab Med, 2014, 52(10): 1433-1435. |
[38] | Zhang RC, Zhang YH, An T, et al. Prognostic value of sST2 and galectin-3 for death relative to renal function in patients hospitalized for heart failure. Biomark Med, 2015, 9(5): 433-441. DOI:10.2217/bmm.15.12 |
[39] | Bayes-Genis A, Zamora E, de Antonio M, et al. Soluble ST2 serum concentration and renal function in heart failure. J Card Fail, 2013, 19(11): 768-775. DOI:10.1016/j.cardfail.2013.09.005 |
[40] | Plawecki M, Morena M, Kuster N, et al. sST2 as a new biomarker of chronic kidney disease-induced cardiac remodeling: Impact on risk prediction. Mediators Inflamm, 2018, 2018: 3952526. |
[41] | Parikh RH, Seliger SL, Christenson R, et al. Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J Am Heart Assoc, 2016, 5(8): e003188. |
[42] | Homsak E, Ekart R. ST2 as a novel prognostic marker in end-stage renal disease patients on hemodiafiltration. Clin Chim Acta, 2018, 477: 105-112. DOI:10.1016/j.cca.2017.12.006 |
[43] | Fang Z. Clinical Studies on sST2 and Cystatin C in the Diagnosis and Prognosis of Heart Failure Patients with Preserved Ejection Fraction[D]. Wuhan: Wuhan University, 2016 (in Chinese). 方中. sST2和cystatin C对射血分数保留心衰患者诊断及预后预测的研究[D].武汉: 武汉大学, 2016. |
[44] | Fri?es F, Lourenco P, Laszczynska O, et al. Prognostic value of sST2 added to BNP in acute heart failure with preserved or reduced ejection fraction. Clin Res Cardiol, 2015, 104(6): 491-499. DOI:10.1007/s00392-015-0811-x |
[45] | Lotierzo M, Dupuy AM, Kalmanovich E, et al. sST2 as a value-added biomarker in heart failure. Clin Chim Acta, 2020, 501: 120-130. DOI:10.1016/j.cca.2019.10.029 |
[46] | Rehman SU, Mueller T, Januzzi JL, Jr.. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol, 2008, 52(18): 1458-1465. DOI:10.1016/j.jacc.2008.07.042 |
[47] | Pascual-Figal DA, Bayes-Genis A, Asensio-Lopez MC, et al. The interleukin-1 axis and risk of death in patients with acutely decompensated heart failure. J Am Coll Cardiol, 2019, 73(9): 1016-1025. |
[48] | Aimo A, Vergaro G, Ripoli A, et al. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail, 2017, 5(4): 287-296. |
[49] | Tang WH, Wu Y, Grodin JL, et al. Prognostic value of baseline and changes in circulating soluble ST2 levels and the effects of nesiritide in acute decompensated heart failure. JACC Heart Fail, 2016, 4(1): 68-77. |
[50] | Boisot S, Beede J, Isakson S, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail, 2008, 14(9): 732-738. DOI:10.1016/j.cardfail.2008.06.415 |
[51] | Manzano-Fernández S, Januzzi JL, Pastor-Pérez FJ, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology, 2012, 122(3): 158-166. DOI:10.1159/000338800 |
[52] | Aimo A, Vergaro G, Passino C, et al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC Heart Fail, 2017, 5(4): 280-286. DOI:10.1016/j.jchf.2016.09.010 |
[53] | Emdin M, Aimo A, Vergaro G, et al. sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol, 2018, 72(19): 2309-2320. DOI:10.1016/j.jacc.2018.08.2165 |
[54] | Wojtczak-Soska K, Pietrucha T, Sakowicz A, et al. Soluble ST2 protein in chronic heart failure is independent of traditional factors. Arch Med Sci, 2013, 9(1): 21-26. |
[55] | Gaggin HK, Szymonifka J, Bhardwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail, 2014, 2(1): 65-72. |
[56] | Weinberg EO, Shimpo M, Hurwitz S, et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation, 2003, 107(5): 721-726. DOI:10.1161/01.CIR.0000047274.66749.FE |
[57] | McCord J, Mundy BJ, Hudson MP, et al. Relationship between obesity and B-type natriuretic peptide levels. Arch Intern Med, 2004, 164(20): 2247-2252. DOI:10.1001/archinte.164.20.2247 |
[58] | Krauser DG, Lloyd-Jones DM, Chae CU, et al. Effect of body mass index on natriuretic peptide levels in patients with acute congestive heart failure: a ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) substudy. Am Heart J, 2005, 149(4): 744-750. |
[59] | Clerico A, Emdin M. Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin Chem, 2004, 50(1): 33-50. DOI:10.1373/clinchem.2003.024760 |
[60] | Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol, 2007, 50(25): 2357-2368. DOI:10.1016/j.jacc.2007.09.021 |
[61] | Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am J Kidney Dis, 2005, 46(4): 610-620. |
[62] | Ibrahim N, Januzzi JL. The potential role of natriuretic peptides and other biomarkers in heart failure diagnosis, prognosis and management. Expert Rev Cardiovasc Ther, 2015, 13(9): 1017-1030. DOI:10.1586/14779072.2015.1071664 |
[63] | Iacoviello M, Aspromonte N, Leone M, et al. Galectin-3 serum levels are independently associated with microalbuminuria in chronic heart failure outpatients. Res Cardiovasc Med, 2016, 5(1): e28952. |
[64] | Gopal DM, Kommineni M, Ayalon N, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc, 2012, 1(5): e000760. |
[65] | Masson S, Latini R, Anand IS, et al. Direct comparison of B-type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: the Valsartan Heart Failure (Val-HeFT) data. Clin Chem, 2006, 52(8): 1528-1538. DOI:10.1373/clinchem.2006.069575 |
[66] | Meijers WC, Januzzi JL, deFilippi C, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J, 2014, 167(6): 853-860. DOI:10.1016/j.ahj.2014.02.011 |
[67] | Grande D, Leone M, Rizzo C, et al. A Multiparametric Approach Based on NT-proBNP, ST2, and Galectin3 for Stratifying One Year Prognosis of Chronic Heart Failure Outpatients. J Cardiovasc Dev Dis, 2017, 4(3): E0009. |
[68] | Zuo JF. Gene Delivery of IL-33 through BMSCs Influence the Inflammation and Cardiac Function of Myocardial Infarction[D]. Suzhou: Soochow University, 2017 (in Chinese). 左建峰. IL-33修饰的BMSCs对心肌梗死炎症和心功能的影响分析[D].苏州: 苏州大学, 2017. |
[69] | Weir RA, Miller AM, Murphy GE, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol, 2010, 55(3): 243-250. DOI:10.1016/j.jacc.2009.08.047 |
[70] | Ding B. The Role of IL-33 and sST2 in Diagnosing Heart Failure[D]. Suzhou: Soochow University, 2014 (in Chinese). 丁兵. IL-33及可溶性ST2在心力衰竭中的价值和意义[D].苏州: 苏州大学, 2014. |
[71] | Lax A, Sanchez-Mas J, Asensio-Lopez MC, et al. Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC. Heart failure, 2015, 3(1): 50-58. |
[72] | Jiang SW, Wang P, Xiang XG, et al. Serum soluble ST2 is a promising prognostic biomarker in HBV-related acute-on-chronic liver failure. Hepatobil Pancreat Dis Int, 2017, 16(2): 181-188. DOI:10.1016/S1499-3872(16)60185-6 |