

1. 江南大学 食品学院,江苏 无锡 214122;
2. 江南大学 无锡医学院,江苏 无锡 214122;
3. 江南大学 生物工程学院,江苏 无锡 214122
收稿日期:2019-08-26;接收日期:2019-11-21;网络出版时间:2019-12-11
基金项目:中国博士后基金项目(No. 2018M630522),江苏省青年基金项目(No. BK20180622)资助
通讯作者:Minchen Wu. Tel: +86-510-85327662; E-mail: biowmc@126.com.
摘要:为提高L-苯乳酸(L-phenyllactic acid,L-PLA)的生产效率,以干酪乳杆菌Lactobacillus casei L-乳酸脱氢酶突变体L-LcLDH1Q88A/I229A为研究对象,实现其在毕赤酵母Pichia pastoris GS115中的分泌表达,并与葡萄糖脱氢酶SyGDH偶联,构建并优化体外辅酶循环体系,不对称还原苯丙酮酸(Phenylpyruvate,PPA)制备L-PLA。结果显示,毕赤酵母重组酶reLcLDH1Q88A/I229A的表观分子量为36.8 kDa,比活力为270.5 U/mg,是原酶的42.9倍。在40 ℃,初始pH为5.0,底物PPA、辅酶NAD+和葡萄糖浓度分别为100、2和120 mmol/L,SyGDH和reLcLDH1Q88A/I229A添加量分别为1和10 U/mL的最优条件下,L-PLA的产率可达99.8%,对映体过量(ee)值> 99.9%,时空产率和平均转化率分别高达9.5 g/(L·h)和257.0 g/(g·h)。结果表明,reLcLDH1Q88A/I229A在不对称还原PPA制备L-PLA中生产效率高,具有工业应用的潜力。
关键词:乳酸脱氢酶毕赤酵母葡萄糖脱氢酶辅酶循环体系L
Expression of a Lactobacillus casei L-lactate dehydrogenase mutant in Pichia pastoris for asymmetric reduction of phenylpyruvate
Ting Zhang1, Jianfang Li1, Die Hu1,2, Chuang Li3, Bochun Hu3, Minchen Wu2


1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China;
2. Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China;
3. School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
Received: August 26, 2019; Accepted: November 21, 2019; Published: December 11, 2019
Supported by: China Postdoctoral Science Foundation (No. 2018M630522), Natural Science Foundation of Jiangsu Province for Youth of China (No. BK20180622)
Abstract: To improve the productivity of L-phenyllactic acid (L-PLA), L-LcLDH1Q88A/I229A, a Lactobacillus casei L-lactate dehydrogenase mutant, was successfully expressed in Pichia pastoris GS115. An NADH regeneration system in vitro was then constructed by coupling the recombinant (re) LcLDH1Q88A/I229A with a glucose 1-dehydrogenase for the asymmetric reduction of phenylpyruvate (PPA) to L-PLA. SDS-PAGE analysis showed that the apparent molecular weight of reLcLDH1Q88A/I229A was 36.8 kDa. And its specific activity was 270.5 U/mg, 42.9-fold higher than that of LcLDH1 (6.3 U/mg). The asymmetric reduction of PPA (100 mmol/L) was performed at 40 ℃ and pH 5.0 in an optimal biocatalytic system, containing 10 U/mL reLcLDH1Q88A/I229A, 1 U/mL SyGDH, 2 mmol/L NAD+ and 120 mmol/L D-glucose, producing L-PLA with 99.8% yield and over 99% enantiomeric excess (ee). In addition, the space-time yield (STY) and average turnover frequency (aTOF) were as high as 9.5 g/(L·h) and 257.0 g/(g·h), respectively. The high productivity of reLcLDH1Q88A/I229A in the asymmetric reduction of PPA makes it a promising biocatalyst in the preparation of L-PLA.
Keywords: L-lactate dehydrogenasePichia pastorisglucose 1-dehydrogenasecoenzyme regeneration systemL-phenyllactic acid
苯乳酸(Phenyllactic acid,PLA)是一种高附加值的天然有机酸,具有广谱抑菌性,可代替防腐剂应用于食品和饲料中[1]。L-PLA和D-PLA是苯乳酸的两种对映异构体[2],它们具有不同的应用价值,D-PLA可用于合成降血糖药物恩格列酮和驱肠虫药PF1022A,而L-PLA可用于合成非蛋白氨基酸Statine和新型生物可降解材料聚苯乳酸[3-5]。生物酶法合成光学纯PLA具有反应条件温和、光学纯度高及环境友好等优点而备受青睐[6]。
乳酸脱氢酶(Lactate dehydrogenase,LDH)分为L-LDH (EC. 1.1.1.27)和D-LDH (EC. 1.1.1.28),是以辅酶NADH或NAD+作为氢传递[7],在生物体内催化丙酮酸与乳酸之间的还原与氧化反应[8]。LDH能够不对称还原潜手性α-酮酸生成α-羟基酸,具有较广的底物谱,对天然底物丙酮酸具有较高酶活力,而对非天然底物苯丙酮酸(Phenylpyruvate,PPA)的酶活力较低。如来源于植物乳杆菌Lactobacillus plantarum的L-LpLDH[9]、L-LpLDH1和L-LpLDH2[10]、巨大芽孢杆菌Bacillus megaterium的L-BmLDH[11]、嗜热脂肪土芽孢杆菌Geobacillus stearothermophilus的L-BsLDH[12]和凝结芽孢杆菌B. coagulans的L-BcLDH[6, 13]催化PPA的比活力分别为28.1、71.1、0.1、3.4、7.4和72.6 U/mg;来源于L. plantarum的D-LpLDH[10]、菊糖芽孢乳杆菌Sporolactobacillus inulinus的D-SiLDH[14]、乳酸片球菌Pediococcus acidilactici的D-PaLDH[15]和戊糖片球菌P. pentosaceus的D-PpLDH[16]催化PPA的比活力分别为215.8、4.3、140.0和116.0 U/mg。
目前,采用微生物发酵法制备非光学纯PLA的PPA转化率及PLA产率均较低[17]。多种来源L-LDH和D-LDH在大肠杆菌Escherichia coli表达,并分别应用于制备光学纯L-PLA和D-PLA。Wang等[14]利用表达D-SiLDHM307L的E. coli全细胞,采用体内辅酶循环体系催化158.2 mmol/L PPA制备D-PLA (eep > 99.7%)的产率为82.3%;Zhu等[9]将L-LpLDH与葡萄糖脱氢酶(Glucose 1-dehydrogenase,GDH)在E. coli中共表达,全细胞催化186.2 mmol/L PPA的转化率为89.2%,L-PLA (eep=99.7%)产率仅为55.7%。Zhu等[9, 18]研究表明,E. coli全细胞自身代谢酶在催化PPA过程中产生副产物,如图 1所示,转氨酶可将PPA转化为苯丙氨酸(Phe),且葡萄糖参与细胞新陈代谢生成乳酸,造成PLA产率低且分离困难。巴斯德毕赤酵母Pichia pastoris本身不分泌内源蛋白,外源蛋白可通过信号序列进行胞外分泌表达。近年,来源于肠系膜明串珠菌Leuconostoc mesenteroides的D-LmLDH[19]和L. plantarum D-LpLDHY52L突变体[20]在P. pastoris胞内表达,分别利用重组P. pastoris全细胞生成D-乳酸和(R)-2-羟基-4-苯基丁酸。
![]() |
图 1 LDH和GDH双酶共表达大肠杆菌全细胞不对称还原PPA制备PLA[9, 18] Fig. 1 Asymmetric reduction of PPA to PLA by co-expressing LDH and GDH in E. coli cells[9, 18]. |
图选项 |
本研究室前期从干酪乳杆菌Lactobacillus casei CICIM B1192基因组中克隆出一种编码L-LDH的基因lcldh1 (GenBank登录号CAP07851),并实现其在E. coli中表达[21],通过定点和迭代饱和突变构建L-LcLDH1Q88A/I229A突变体,显著提高其催化PPA的酶活力。为避免副产物形成,提高L-PLA产率,本研究利用P. pastoris GS115分泌表达L-LcLDH1Q88A/I229A突变体,并与嗜酸热源体Thermoplasma aciddophilium葡萄糖脱氢酶SyGDH构建体外辅酶NADH循环体系,通过进一步优化reLcLDH01Q88A/I229A和SyGDH双酶偶联不对称还原PPA的催化条件,实现高效制备L-PLA。
1 材料与方法1.1 材料与试剂重组菌E. coli/pET-22b-lcldh1、E. coli/pET-22b-lcldh1Q88A/I229A、E. coli/pET-22b和E. coli/pET-28a-sygdh,表达宿主E. coli JM109和P. pastoris GS115和表达质粒pPIC9K均由实验室保藏;克隆载体pUCm-T购自生工生物工程(上海)股份有限公司;T4 DNA连接酶、内切酶EcoRⅠ、NotⅠ和SalⅠ,购自大连TaKaRa公司;质粒提取试剂盒和ES Taq Master Mixture购自江苏康为世纪公司;苯丙酮酸钠、D-/L-苯乳酸和苯丙氨酸均购于美国Sigma-Aldrich公司;还原型辅酶ⅠNADH和氧化型辅酶ⅠNAD+购自上海阿拉丁公司。
1.2 方法1.2.1 重组表达质粒的构建根据乳酸脱氢酶L-LcLDH1基因及酵母表达载体pPIC9K多克隆位点,设计上游和下游引物(L9K-F:5′-CTCGAGAAAAGAGTGGCAAGTATT ACGG-3′;L9K-R:5′-GCGGCCGCCTAGTGGTGG TGGTGGTGGTGCTGACGAGTTTCGATG-3′),酶切位点为EcoRⅠ和NotⅠ(下划线表示),并委托生工生物工程(上海)股份有限公司合成。
以重组质粒pET-22b-lcldh1或pET-28a-lcldh1Q88A/I229A为模板,L9K-F和L9K-R为引物,通过PCR扩增出目的基因(lcldh1和lcldh1Q88A/I229A),与pUCm-T载体连接构建克隆质粒pUCm-T-lcldh1和pUCm-T-lcldh1Q88A/I229A,经EcoRⅠ和NotⅠ双酶切的克隆质粒与经同样双酶切的pPIC9K连接后,转化E. coli JM109,构建重组菌JM109/ pPIC9K-lcldh1和JM109/pPIC9K-lcldh1Q88A/I229A。
1.2.2 重组毕赤酵母转化子的筛选和表达提取pPIC9K、pPIC9K-lcldh1和pPIC9K-lcldh1Q88A/I229A质粒,经SalⅠ线性化后,电转化P. pastoris GS115感受态细胞,构建重组P. pastoris菌GS115/lcldh1和GS115/lcldh1Q88A/I229A。参照Multi-Copy Pichia Expression Kit操作手册,补料添加1% (V/V)的甲醇在30 ℃诱导培养72 h,收集发酵液,以经同样条件诱导的GS115/pPIC9K作为阴性对照,SDS-PAGE分析重组酶表达。
1.2.3 酶活力的测定及检测方法LDH酶活力测定:1 mL醋酸-醋酸钠缓冲液(50 mmol/L,pH 5.5),加入10 mmol/L PPA,2 mmol/L NADH,混匀后35 ℃保温5 min,加入适量酶液反应5 min,加入2 mL甲醇终止反应,采用反相HPLC色谱分析PLA生成量。在上述条件下,每分钟生成1 μmol的PLA定义为1个LDH活力单位(U)。GDH酶活力测定参照文献报道[22],反应温度和pH修改为35 ℃和5.5。
反相HPLC分析方法:采用HPLC为Waters e2695系统,二极管阵列(PDA)检测器和ProntoSIL C18 AQ (4.6 mm×250 mm,5 μm)色谱柱进行样品分析。检测条件为:流动相为水/甲醇(62︰38,V/V,含0.05%三氟乙酸),流速1.0 mL/min,进样量为10 μL,色谱柱温度为30 ℃,检测波长210 nm。Phe、PPA和PLA的保留时间分别是4.52、9.23和10.9 min。
正相HPLC分析方法:采用Daicel OD-H (4.6 mm×250 mm,5 μm)色谱柱分析PLA的光学纯度。检测条件为:流动相为正己烷/异丙醇(98︰2,V/V,含0.05%三氟乙酸),其他条件与反相HPLC相同。D-PLA和L-PLA的保留时间分别是25.7和28.1 min。L-PLA的对映体过量值(eep)计算公式为:
$e{e_\mathit{\boldsymbol{p}}}(\% ) = \frac{{{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{L}}} -{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{D}}}}}{{{\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{L}}} + {\mathit{\boldsymbol{A}}_\mathit{\boldsymbol{D}}}}} \times 100$ | (1) |
1.2.4 辅酶NADH循环体系的构建和验证重组葡萄糖脱氢酶SyGDH (GenBank登录号AL445065)的诱导表达及纯化参考文献报道[22],纯化SyGDH后经冷冻干燥制得SyGDH酶粉。构建不同辅酶NADH循环体系(表 1),催化体系中参数分别为50 mmol/L醋酸钠缓冲液(pH 5.5),10 mmol/L PPA,2 mmol/L NADH或NAD+,15 mmol/L葡萄糖,0.2 U/mL reLcLDH1Q88A/I229A和0.2 U/mL SyGDH;以E. coli/lcldh1Q88A/I229A全细胞催化作对照,反应体系中包含50 mmol/L醋酸钠缓冲液(pH 6.0),10 mmol/L PPA,15 mmol/L葡萄糖和50 mg/mL E. coli/LcLDH1Q88A/I229A湿菌体,反应条件均为35 ℃、220 r/min反应2 h,按照1.2.3反相HPLC色谱测定L-PLA的产量。
1.2.5 双酶偶联不对称还原苯丙酮酸催化条件的优化温度和pH对催化反应的影响:构建包含10 mmol/L PPA、0.5 mmol/L NAD+、20 mmol/L葡萄糖、0.2 U/mL reLcLDH1Q88A/I229A和0.2 U/mL SyGDH的催化体系,分别在不同反应温度(20–60 ℃)和pH 5.5缓冲液或者不同pH (3.5–7.0)缓冲液和40 ℃条件下进行催化反应,反应20 min后测定L-PLA的产量。
PPA浓度对催化反应的影响:构建包含不同底物浓度PPA (20–300 mmol/L)、葡萄糖浓度为PPA 1.5倍、2.5 mmol/L NAD+、15 U/mL reLcLDH1Q88A/I229A和1 U/mL SyGDH的催化体系,在40 ℃和pH 5.0条件下反应不同时间取样,测定L-PLA的产量。
酶添加量对催化反应的影响:构建包含100 mmol/L PPA、150 mmol/L葡萄糖、2.5 mmol/L的NAD+、不同酶量(0.5–15 U/mL) reLcLDH1Q88A/I229A和1 U/mL SyGDH的催化体系,在40 ℃和pH 5.0条件下反应2 h后,分别测定L-PLA的产量。
NAD+浓度对催化反应的影响:构建包含100 mmol/L PPA、150 mmol/L葡萄糖、不同浓度(0.2–2.5 mmol/L)的NAD+,10 U/mL的reLcLDH1Q88A/I229A和1 U/mL SyGDH的催化体系,在40 ℃和pH 5.0条件下反应2 h后,分别测定L-PLA的产量。
葡萄糖浓度对催化反应的影响:构建包含100 mmol/L PPA,不同浓度(80–200 mmol/L)葡萄糖,2.0 mmol/L NAD+,10 U/mL reLcLDH1Q88A/I229A和1 U/mL SyGDH的催化体系,在40 ℃和pH 5.0条件下反应2 h后,分别测定L-PLA的产量。
1.2.6 双酶偶联不对称还原苯丙酮酸的反应进程在25 mL双酶偶联催化体系,包含50 mmol/L醋酸-醋酸钠(pH 5.0)、100 mmol/L PPA、120 mmol/L葡萄糖,2.0 mmol/L NAD+、10 U/mL reLcLDH1Q88A/I229A和1 U/mL SyGDH的催化体系,在40 ℃、220 r/min条件下反应不同时间取样,按照1.2.3反相HPLC测定PPA的转化率和L-PLA的产量,正相HPLC检测L-PLA的对映体过量值,并计算出时空产率(Space time yield,STY)和平均转化率(Average turnover frequency,aTOF),其计算公式为:
$\mathit{\boldsymbol{STY}}({\rm{g}}/(\mathit{\boldsymbol{L}} \cdot \mathit{\boldsymbol{h}})) = \frac{{{\mathit{\boldsymbol{C}}_\mathit{\boldsymbol{P}}}}}{t}$ | (2) |
式中:cp为L-PLA的产量(g/L),t为反应时间(h),ce为酶蛋白添加量(g/L)。
2 结果与分析2.1 重组毕赤酵母的构建及表达重组酵母GS115/lcldh1和GS115/lcldh1Q88A/I229A经甲醇诱导收集发酵液,SDS-PAGE分析表明reLcLDH1和reLcLDH1Q88A/I229均在约36.8 kDa处有明显特异性条带,与E. coli/lcldh1Q88A/I229A表达reLcLDH1Q88A/I229的目的条带大小一致(图 2)。以PPA为底物,reLcLDH1和reLcLDH1Q88A/I229A的比活力分别为6.3 U/mg和270.5 U/mg,reLcLDH1Q88A/I229比活力明显高于其他来源天然L-LDH[6, 9-12]。Aslan等[12]通过半理性设计获得最优突变酶L-BsLDHN101D/Q102Y催化PPA比活力仅从7.4 U/mg提高至51.3 U/mg。
![]() |
图 2 重组酶LcLDH1 and LcLDH1Q88A/I229A的SDS-PAGE分析 Fig. 2 SDS-PAGE analysis of the recombinant LcLDH1 and LcLDH1Q88A/I229A. M: protein marker; 1: the cultured supernatant of GS115/pPIC9K; 2: the cultured supernatant of GS115/lcldh1; 3: the cultured supernatant of GS115/lcldh1Q88A/I229A; 4: the whole cells of E. coli/ pET-22b; 5: the whole cells of E. coli/lcldh1Q88A/I229A. |
图选项 |
2.2 辅酶NADH循环体系的构建及验证重组葡萄糖脱氢酶SyGDH具有较强的耐酸和适酸性,以及热稳定性[22],通过构建reLcLDH1Q88A/I229A和SyGDH不同的双酶偶联体系,验证辅酶NADH循环再生的可行性。如表 1所示,催化体系1、2、3和4说明SyGDH在以葡萄糖作为底物实现了NADH辅酶循环再生,在未同时添加SyGDH和葡萄糖的体系2和4中,PLA产率决于NADH的添加量;催化体系4和6表明添加NAD+与NADH均能实现辅酶循环,产物L-PLA产率高达99.9% (图 3A,3C),其eep > 99.9% (图 3D–E),故选择价格较低的NAD+作为辅酶。对比7和8表明,E. coli/lcldh1Q88A/I229A全细胞作为催化剂时,不需要额外添加辅酶,但PLA产率仅为89.1%,其副产物的出峰时间与苯丙氨酸一致(图 3B)。全细胞含有各种酶系,无额外添加辅酶也可完成辅酶NADH的循环再生,但往往再生效率较低。与此同时,E. coli代谢途径转氨反应中的氨基酸转移酶,可将一部分PPA进行转氨形成苯丙氨酸[23]。Zhu等[9]也在研究中提到,其用E. coli/pETduet-lpldh催化时有将近30%的PPA被用于其他代谢途径,这导致PPA的转化效率和PLA的产率均不高。
表 1 不同催化体系验证体外辅酶NADH循环的构建Table 1 Verification of NADH regeneration in vitro in the different reaction systems
Catalytic system | Conversion (%) | Yield (%) |
1: reLcLDH1Q88A/I229A+PPA | ND a | ND |
2: reLcLDH1Q88A/I229A+PPA+NADH | 20.0±0.6 | 19.8±0.6 |
3: reLcLDH1Q88A/I229A+SyGDH+PPA+NADH | 19.9±0.5 | 19.7±0.5 |
4: reLcLDH1Q88A/I229A+SyGDH+PPA+NADH+glucose | 100±2.5 | 99.9±2.4 |
5: reLcLDH1Q88A/I229A+SyGDH+PPA+NAD+ | ND | ND |
6: reLcLDH1Q88A/I229A+SyGDH+PPA+NAD++glucose | 100±2.4 | 99.9±2.5 |
7: reLcLDH1Q88A/I229A+SyGDH+PPA+glucose | ND | ND |
8: E. coli/lcldh1Q88A/I229A+PPA+glucose | 100±2.1 | 89.1±1.6 |
a ND means not detected. |
表选项
![]() |
图 3 HPLC分析重组L-LcLDH1Q88A/I229A催化不对称还原PPA Fig. 3 HPLC analysis of the asymmetric reduction of PPA catalyzed by recombinant L-LcLDH1Q88A/I229A. (A) Phe, PPA and PLA standard samples. (B) E. coli whole cells catalyzed PPA. (C, E) reLcLDH1Q88A/I229A catalyzed PPA coupling with SyGDH. (D) Racemic PLA standard samples. |
图选项 |
2.3 双酶偶联不对称还原苯丙酮酸的催化条件优化2.3.1 温度和pH对催化反应的影响酶促反应效率与温度和pH有关。如图 4A所示,L-PLA的产量随反应温度的升高而升高,且在40 ℃时达到最高值。如图 4B所示,L-PLA产量在pH为5.0时达到最高,当pH > 5.0后,随着pH的增高,产量明显降低,pH到达7.0时,产量为零,表明温度和pH对催化反应具有重要影响,双酶偶联催化反应的最适温度和pH为40 ℃和5.0,与reLcLDH1Q88A/I229A的最适反应温度和pH一致。由于SyGDH具有良好的温度和pH稳定性,而温度和pH对reLcLDH1Q88A/I229A的影响较大,故双酶偶联体系中催化生成L-PLA依赖于reLcLDH1Q88A/I229A。
![]() |
图 4 不同温度、pH值下双酶偶联体系催化不对称还原PPA Fig. 4 Asymmetric reduction of PPA at different temperatures (A) and pH values (B) in double-enzyme system. |
图选项 |
2.3.2 PPA浓度对催化反应的影响为提高PPA的生产效率,构建reLcLDH1Q88A/I229A和SyGDH体外双酶偶联体系催化不同浓度的PPA。如表 2所示,10、50和100 mmol/L的PPA在2 h内完全水解,L-PLA的产率均大于99%,时空产率(STY)从1.64 g/(L·h)提高至8.2 g/(L·h);当PPA浓度为150 mmol/L时,L-PLA的产量为104.1 mmol/L,而产率仅为69.4%,由于随着L-PLA浓度增加,SyGDH催化葡萄糖产生等量葡萄糖酸,测定催化体系中pH值从5.0降至3.0,导致reLcLDH1Q88A/I229A和SyGDH酶活力显著降低,从而不能继续转化PPA。此外,当PPA浓度大于150 mmol/L时,L-PLA的产量随着PPA浓度的增加而降低,当底物浓度为300 mmol/L时,L-PLA的产量仅为9.6 mmol/L,表明存在底物抑制作用。据文献报道,由于高浓度PPA对LDH的催化具有抑制作用,采用补料添加PPA的手段可以显著增加PLA的产量[9, 24-25]。Zheng等[6]研究表明,L-BcLDH催化PPA抑制浓度为90 mmol/L,Zhu等[9]研究中指出L-LpLDH催化80 mmol/L PPA的转化效率最佳。
表 2 双酶偶联体系不对称还原不同浓度的PPATable 2 Asymmetric reduction of PPA at different concentrations in double-enzyme system
Substrate (mmol/L) | Time (h) | Conversion (%) | Production (mmol/L) | Yield (%) | STY (g/(L·h)) |
10 | 2 | 100±2.5 | 9.9±0.1 | 99.9 | 1.64 |
50 | 2 | 100±3.0 | 49.9±1.3 | 99.8 | 4.2 |
100 | 2 | 100±2.2 | 99.6±2.5 | 99.6 | 8.2 |
150 | 4 | 69.5±1.2 | 104.1±3.1 | 69.4 | 4.3 |
200 | 5 | 38.4±1.0 | 76.2±2.1 | 38.1 | 3.2 |
250 | 5 | 11.3±0.2 | 28.0±0.6 | 11.2 | 0.9 |
300 | 5 | 3.5±0.1 | 9.6±0.3 | 3.2 | 0.3 |
表选项
2.3.3 酶添加量、NAD+浓度和葡萄糖浓度对催化反应的影响为进一步提高其生产效率,对酶添加量、NAD+浓度和葡萄糖浓度进行优化。如图 5所示,随着reLcLDH1Q88A/I229A添加量的增大,L-PLA的产率逐渐增加,当达到10 U/mL时,L-PLA产率可达99.9%;当NAD+添加量为2.0 mmol/L时,L-PLA产量达到最高;葡萄糖浓度超过120 mmol/L后L-PLA产量稍微降低。与初始反应体系相比,reLcLDH1Q88A/I229A酶添加量、NAD+浓度和葡萄糖浓度分别降低至10 U/mL、2.0和120 mmol/L以提高其利用率。
![]() |
图 5 双酶偶联不对称还原PPA催化条件的优化 Fig. 5 Optimization of the catalytic conditions for the asymmetric reduction of PPA in double-enzyme system. |
图选项 |
2.4 双酶偶联不对称还原苯丙酮酸以优化的催化条件下,扩大双酶偶联反应体系至25 mL,检测不对称还原100 mmol/L PPA制备L-PLA的反应进程。如图 6所示,反应105 min后,PPA的转化率 > 99.9%,L-PLA的产率可达到99.8%,eep > 99.9%,平均转化率aTOF为257.0 g/(g·h),时空产率为9.5 g/(L·h)。与其他不同来源的LDH不对称还原PPA制备PLA的比较如表 3所示,尽管L-LpLDH与GDH双酶共表达E. coli全细胞催化PPA生成L-PLA具有较高时空产率,但其L-PLA的产率仅为55.8%;Xu等[26]利用来源于乳杆菌Lactobacillus sp. CGMCC 9967的苯丙酮酸还原酶LaPPR与GDH双酶共表达E. coli全细胞(20 g干细胞)催化PPA生成D-PLA浓度高达550.0 mmol/L,产率为91.3%,由于较低的催化活力,其aTOF仅为0.5 g/(g·h)。与已有报道相比,reLcLDH1Q88A/I229A和SyGDH体外双酶偶联催化不对称还原PPA具有更高的产率和生产效率。
![]() |
图 6 reLcLDH1Q88A/I229A不对称还原PPA产L-PLA的进程曲线 Fig. 6 Time course of the production of L-PLA from PPA by reLcLDH1Q88A/I229A. |
图选项 |
表 3 比较不同来源LDH不对称还原PPA制备PLATable 3 Comparison of asymmetric reduction of PPA to prepare PLA by LDH
Enzyme | Catalyst | Activity (U/mg) | PPA feeding (times) | PPA (mmol/L) | PLA (mmol/L) | Time (h) | c (%) | Yield (%) | STY (g/(L·h)) | aTOF (g/(g·h)) | eep(%) | Refernce |
L-LpLDH a | E. coli cells | 9.5 c | 2 | 186.2 | 103.8 (L) | 1.0 | 89.2 | 55.8 | 17.2 | ND | > 99.7 | [9] |
D-LpLDHY52V b | E. coli cells | 55.0 c | 5 | 164.6 | 105.2 (D) | 3.0 | 77.6 | 64.7 | 3.49 | 0.41 e | ND | [24] |
LpLDH b | L. plantarum cells | ND | 4 | 120.0 | 85.2 (NT) | 16.0 | 83.3 | 71.0 | 0.9 | 0.03 e | ND | [25] |
LaPPR a | E. coli cells | 19.6 d | 0 | 602.0 | 550.0 (D) | 9.0 | 100 | 91.3 | 10.1 | 0.51 e | > 99.0 | [26] |
D-LrLDH a | E. coli cell-free extract | 0.3 e | 0 | 182.9 | 108.9 (D) | 3.0 | NT | 60.3 | 6.8 | 0.45 e | > 99.0 | [27] |
L-LcLDH1Q88A/I229A a | P. pastoris cultured supernatant | 270.4 f | 0 | 100.0 | 99.8 (L) | 1.8 | 100 | 99.8 | 9.5 | 257.0 | > 99.9 | This study |
a Coupled with GDH; b Coupled with formate dehydrogenase; c Cell-free extract; d Purified enzyme; e Dry cells; f Cultured supernatant; NT means not told. |
表选项
3 结论微生物发酵和酶催化是生物催化法合成PLA的两种重要途径。微生物发酵法由于底物转化率低、反应时间长和无法获得光学纯PLA,而不能满足实际生产。L-乳酸脱氢酶是酶催化生产L-PLA的关键酶,但目前已报道的L-乳酸脱氢酶的酶活力较低,且大多以大肠杆菌表达宿主,存在生成副产物、产率较低和生产效率低等缺点。本研究将突变酶L-LcLDH1Q88A/I229A在毕赤酵母中分泌表达,重组L-LcLDH1Q88A/I229A具有高酶活力;构建reLcLDH1Q88A/I229A与SyGDH的体外辅酶NADH再生的双酶偶联体系不对称还原PPA,并通过优化双酶偶联催化体系显著提高了底物PPA浓度和L-PLA的生产效率。本研究构建的重组L-乳酸脱氢酶突变体的体外辅酶循环体系,在不对称还原PPA中具有高催化活力、不产生副产物、高光学纯度和高生产效率等优点,使其具有较好的工业应用前景。
参考文献
[1] | Ning YW, Yan AH, Yang K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem, 2017, 228: 533-540. |
[2] | Fujii T, Shimizu M, Doi Y, et al. Novel fungal phenylpyruvate reductase belongs to D-isomer-specific 2-hydroxyacid dehydrogenase family. Biochim et Biophys Acta, 2011, 1814(12): 1669-1676. |
[3] | Hashimoto Y, Kobayashi E, Endo T, et al. Conversion of a cyanhydrin compound into S-(-)-3-phenyllactic acid by enantioselective hydrolytic activity of Pseudomonas sp.BC-18. Biosci Biotechnol Biochem, 2014, 60(8): 1278-1283. |
[4] | Fujita T, Nguyen HD, Ito T, et al. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers. Appl Microbiol Biotechnol, 2013, 97(20): 8887-8894. |
[5] | Simmons TL, Baker GL. Poly (phenyllactide):Synthesis, characterization, and hydrolytic degradation. Biomacromolecules, 2001, 2(3): 658-663. |
[6] | Zheng ZJ, Zhao MY, Zang Y, et al. Production of optically pure L-phenyllactic acid by using engineered Escherichia coli coexpressing L-lactate dehydrogenase and formate dehydrogenase. J Biotechnol, 2015, 207: 47-51. |
[7] | Qin Y, Dong ZY, Liu LM, et al. Manipulation of NADH metabolism in industrial strains. Chin J Biotech, 2009, 25(2): 161-169 (in Chinese). 秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009, 25(2): 161-169. |
[8] | Al-Jassabi S. Purification and kinetic properties of skeletal muscle lactate dehydrogenase from the lizard Agama stellio stellio. Biochemistry (Moscow), 2002, 67(7): 786-789. |
[9] | Zhu YB, Wang Y, Xu JZ, et al. Enantioselective biosynthesis of L-phenyllactic acid by whole cells of recombinant Escherichia coli. Molecules, 2017, 22(11): 1966. |
[10] | Jia JH, Mu WM, Zhang T, et al. Bioconversion of phenylpyruvate to phenyllactate:gene cloning, expression, and enzymatic characterization of D-and L1-lactate dehydrogenases from Lactobacillus plantarum SK002. Appl Biochem Biotechnol, 2010, 162(1): 242-251. DOI:10.1007/s12010-009-8767-9 |
[11] | Wang Y, Fan M, Xue SM, et al. Production of L-phenyllactic acid from whole-cell recombinant Escherichia coli. Food Fermn Ind, 2015, 41(12): 13-17 (in Chinese). 王颖, 范铭, 薛素妹, 等. 全细胞催化合成L-苯基乳酸重组大肠杆菌的构建. 食品与发酵工业, 2015, 41(12): 13-17. |
[12] | Aslan AS, Birmingham WR, Karagüler NG, et al. Semi-rational design of Geobacillus stearothermophilus L-lactate dehydrogenase to access various chiral α-hydroxy acids. Appl Biochem Biotechnol, 2016, 179(3): 474-484. DOI:10.1007/s12010-016-2007-x |
[13] | Zheng ZJ, Ma CQ, Gao C, et al. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PLoS ONE, 2011, 6(4): e19030. |
[14] | Wang M, Zhu LF, Xu XL, et al. Efficient production of enantiomerically pure D-phenyllactate from phenylpyruvate by structure-guided design of an engineered D-lactate dehydrogenase. Appl Biochem Biotechnol, 2016, 100(17): 7471-7478. |
[15] | Mu WM, Yu SH, Jiang B, et al. Characterization of D-lactate dehydrogenase from Pediococcus acidilactici that converts phenylpyruvic acid into phenyllactic acid. Biotechnol Lett, 2012, 34(5): 907-911. |
[16] | Yu SH, Jiang HY, Jiang B, et al. Characterization of D-lactate dehydrogenase producing D-3-phenyllactic acid from Pediococcus pentosaceus. Biosci Biotechnol Biochem, 2012, 76(4): 853-855. DOI:10.1271/bbb.110955 |
[17] | Mu WM, Liu FL, Jia JH, et al. 3-phenyllactic acid production by substrate feeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007.Bioresour Technol, 2009, 100(21): 5226-5229. |
[18] | Zhu YB, Wang LG, Hu FY, et al. Enhancement of phenyllactic acid biosynthesis by recognition site replacement of D-lactate dehydrogenase from Lactobacillus pentosus. Biotechnol Lett, 2015, 37(6): 1233-1241. |
[19] | Yamada R, Ogura K, Kimoto Y, et al. Toward the construction of a technology platform for chemicals production from methanol:D-lactic acid production from methanol by an engineered yeast Pichia pastoris. World J Microbiol Biotechnol, 2019, 35(2): 37. DOI:10.1007/s11274-019-2610-4 |
[20] | Wang XR, Yu ZT, Tang JW, et al. Efficient production of (R)-(-)-2-hydroxy-4-phenylbutyric acid by recombinant Pichia pastoris expressing engineered D-lactate dehydrogenase from Lactobacillus plantarum with a single-site mutation. Bioprocess Biosyst Eng, 2018, 41(9): 1383-1390. |
[21] | Li JF, Li XQ, Liu Y, et al. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid. J Biotechnol, 2018, 281: 193-198. |
[22] | Yu T, Hu D, Wu MC, et al. Enzymatic characterization and coenzyme regeneration of a recombinant glucose 1-dehydrogenase. J Food Sci Biotechnol, 2014, 33(9): 910-916 (in Chinese). 余涛, 胡蝶, 邬敏辰, 等. 重组葡萄糖脱氢酶的酶学性质及其偶联辅酶再生. 食品与生物技术学报, 2014, 33(9): 910-916. |
[23] | Prasuna ML, Mujahid M, Sasikala C, et al. L-Phenylalanine catabolism and L-phenyllactic acid production by a phototrophic bacterium, Rubrivivax benzoatilyticus JA2. Microbiol Res, 2012, 167(9): 526-531. |
[24] | Zhu YB, Jiang ZY, Chen JB, et al. Fusion of D-lactate dehydrogenase and formate dehydrogenase for increasing production of (R)-3-phenyllactic acid in recombinant Escherichia coli BL21(DE3). J Biobased Mater Bio, 2017, 11(4): 372-378. |
[25] | Li MH, Meng XM, Sun ZY, et al. Effects of NADH availability on 3-phenyllactic acid production by Lactobacillus plantarum expressing formate dehydrogenase. Curr Microbiol, 2019, 76(6): 706-712. |
[26] | Xu GC, Zhang LL, Ni Y. Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp.CGMCC 9967. J Biotechnol, 2016, 222: 29-37. |
[27] | Luo X, Yang ZF, Zang Y, et al. Synthesis of D-phenyllactic acid catalyzed by coupled lactate dehydrogenase and glucose dehydrogenase. J Food Fermn Ind, 2019, 45(7): 22-28 (in Chinese). 罗希, 杨泽锋, 臧瑜, 等. 乳酸脱氢酶与葡萄糖脱氢酶偶联催化合成D-苯基乳酸. 食品与发酵工业, 2019, 45(7): 22-28. |