刘晓柱1, 李银凤1, 于志海1, William HARDIE James1,2, 黄名正1
1. 贵州理工学院食品药品制造工程学院, 贵州 贵阳 550003;
2. 常州大学石油化工学院, 食品学院, 江苏 常州 213000
收稿日期:2019-11-07;修回日期:2020-04-03;网络出版日期:2020-06-16
基金项目:贵州省科技计划项目(黔科合平台人才[2017]5789,[2018]5603);贵州省教育厅创新群体重大研究项目(黔教合KY字[2017]046);贵州理工学院高层次人才科研启动经费项目(XJGC20190625)
*通信作者:黄名正, Tel/Fax:+86-851-88210723;E-mail:huangmingzheng01@163.com.
摘要:[目的] 分析刺梨果实自然发酵过程中非酿酒酵母菌群特征,为筛选优质刺梨非酿酒酵母提供参考。[方法] 基于Illumina MiSeq高通量测序技术和WL营养琼脂鉴定培养基纯种分离技术,分析刺梨果实自然发酵1 d(F1)、3 d(F3)、5 d(F5)和15 d(F15)4个阶段及YPD培养基富集培养样本中非酿酒酵母种群组成和多样性。[结果] 高通量测序分析结果共获得182个OTUs(operational taxonomic units,OTUs),归属于81个属107个种;物种多样性分析结果表明,刺梨果实自然发酵前期,优势非酿酒酵母为汉逊酵母(Hanseniaspora sp.)和伯顿丝孢毕赤酵母(Hyphopichia burtonii),二者在样本F1中分别占42.59%和26.85%;随着自然发酵的不断进行,二者的比例逐渐降低,在第15天(F15),Hanseniaspora sp.和H.burtonii比例降低至7.73%和0.52%。相反,Pichia sporocuriosa和未培养的酵母,随着自然发酵不断进行所占比例逐渐增大,分别由F1中的0.23%和0.33%增至F15中的37.26%和32.62%。此外,采用WL营养琼脂鉴定培养基纯种分离和鉴定技术,从刺梨上分离到Hanseniaspora sp.、H.burtonii、克鲁维毕赤酵母(Pichia kluyveri)、P.sporocuriosa和异常威克汉姆酵母(Wickerhamomyces anomalus)5种类型的可培养非酿酒酵母。[结论] 刺梨果实上存在着丰富的非酿酒酵母菌资源,研究刺梨自然发酵过程中非酿酒酵母多样性,为酵母资源开发和利用奠定基础。
关键词:刺梨自然发酵非酿酒酵母多样性
Biodiversity of non-Saccharomyces yeasts during natural fermentation of Rosa roxburghii
Xiaozhu Liu1, Yinfeng Li1, Zhihai Yu1, HARDIE James William1,2, Mingzheng Huang1
1. College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, Guizhou Province, China;
2. School of Petrochemistry Engineering, School of Food Science and Technology, Changzhou University, Changzhou 213000, Jiangsu Province, China
Received: 7 November 2019; Revised: 3 April 2020; Published online: 16 June 2020
*Corresponding author: Mingzheng Huang, Tel/Fax:+86-851-88210723;E-mail:huangmingzheng01@163.com.
Foundation item: Supported by the Science and Technology Program of Guizhou Province (Talents of Guizhou Science Cooperation Platform [2017]5789, [2018]5603), by the Innovation Group Research Project from Guizhou Provincial Education Department (KY2017046), and by the High-level Talent Research Funding Project of Guizhou Institute of Technology (XJGC20190625)
Abstract: [Objective] The present study aims to reveal non-Saccharomyces yeasts biodiversity and theirs changes during natural fermentation of Rosa roxburghii fruit, so as to provide reference for the screening of high quality non-Saccharomyces yeasts. [Methods] The composition and biodiversity in non-Saccharomyces yeasts communities in four natural fermentation stages including 1 d (F1), 3 d (F3), 5 d (F5) and 15 d (F15) and the cultures from R. roxburghii in YPD medium were analyzed using high-throughput sequencing and WL (Wallerstein laboratory nutrient agar) identification medium. [Results] High-throughput sequencing results show that a total of 182 operational taxonomic units (OTUs) were detected and assigned to 81 species in 107 genera. Hanseniaspora sp. and Hyphopichia burtonii were predominant in R. roxburghii fruit, accounting for 42.59% and 26.85% in F1, respectively. With the continuous progress of natural fermentation, the content of Hanseniaspora sp. and H. burtonii decreased gradually. At the end of fermentation (F15), the proportion of Hanseniaspora sp. and H. burtonii decreased to 7.73% and 0.52%, respectively. In contrast, the proportion of Pichia sporocuriosa and unclassified_o_Saccharomycetales increased from 0.23%, 0.33% in F1 to 37.26%, 32.62% in F15, respectively. Moreover, Hanseniaspora_sp., H. burtonii, Pichia kluyveri, P. sporocuriosa and Wickerhamomyces anomalus were also isolated by pure culture approach. [Conclusion] There were abundant resources of non-Saccharomyces yeasts in R. roxburghii fruit. Study on the biodiversity of non-Saccharomyces yeasts during natural fermentation of R. roxburghii, it aims to lay a foundation for the exploitation and utilization of these yeast resources.
Keywords: Rosa roxburghiinatural fermentationnon-Saccharomyces yeastsbiodiversity
果酒的自然发酵过程本质上是各种微生物相互作用的结果[1-2]。不同种属的酵母共同参与完成了果酒的自然发酵。根据发酵性能的差异,可将酵母菌分为酿酒酵母(Saccharomyces cerevisiae)和非酿酒酵母(non-Saccharomyces yeast)两大类[3]。酿酒酵母发酵活性强,酒精耐受性高,主要进行酒精发酵。非酿酒酵母是除酿酒酵母之外的一大类酵母的总称,包括葡萄汁有孢汉逊酵母(Hanseniaspora uvarum)、异常威克汉姆酵母(Wickerhamomyces anomalus)、美极梅奇酵母(Metschnikowia pulcherrima)等[4]。非酿酒酵母天然存在于果园土壤、水果表皮以及果酒酿造环境中,参与果酒复杂的风味物质形成[5-7]。在果酒发酵过程中,非酿酒酵母可以产生多种胞外酶,如果胶酶、蛋白酶、葡聚糖酶、木聚糖酶、淀粉酶、脂肪酶等,这些酶作用于果汁中的相关底物,进而影响果酒的组成成分及风味物质[8];一些非酿酒酵母还可产生较高浓度的甘油,对增加果酒的口感与复杂度具有积极的作用[9]。
刺梨(Rosa roxburghii),蔷薇科(Rosaceae)蔷薇属(Rosa)植物,富含维生素C及各种有机酸等[10-11]。贵州是刺梨原产地的中心,资源丰富。但刺梨的采收时间多集中于每年8月份前后的1个月内,炎热的天气使得果实采摘后少则1周多则1个月左右即开始腐烂,严重影响了果农的经济收益。同时,刺梨果实中单宁和有机酸含量较高,果实生食酸涩,口感较差。因此,进行深加工是刺梨产业必然的选择。但到目前为止,对于刺梨酵母研究还比较少,而分析刺梨发酵过程中非酿酒酵母菌的多样性变化还未见报道。因此,探讨刺梨酿造过程中非酿酒酵母多样性及其动态变化,对优质刺梨果酒酿造酵母的选育及对刺梨的加工具有重要的指导意义。
1 材料和方法 1.1 材料与试剂 刺梨,品种为贵龙5号,采购于贵州龙里。
酵母浸粉、蛋白胨、葡萄糖、琼脂、琼脂糖(西班牙进口分装)以及常规化学试剂采购于贵州博奥瑞杰生物科技有限公司;柱式真菌基因组DNA提取试剂盒(B518259)与marker购自生工生物工程(上海)股份有限公司;高保真DNA聚合酶(R051A)及PCR其他试剂购自宝日医生物技术(北京)有限公司。
本研究所用引物由上海美吉生物科技有限公司合成,引物信息见表 1。
表 1. 本研究所用引物 Table 1. Primers used in this study
Primers | Sequences (5′→3′) | Usage |
ITS3F | GCATCGATGAAGAACGCAGC | To amplify the ITS region of yeasts for high-throughput sequencing |
ITS4R | TCCTCCGCTTATTGATATGC | |
NL1 | GCATATCAATAAGCGGAGGAAAAG | To amplify the 26S rDNA D1/D2 region of yeasts for molecular identification |
NL4 | GGTCCGTGTTTCAAGACGG |
表选项
1.2 培养基
1.2.1 YPD液体培养基(g/L): 酵母浸粉10,蛋白胨20,葡萄糖20,pH自然,121 ℃,灭菌15 min。4 ℃保存备用。
1.2.2 YPD固体培养基(g/L): 酵母浸粉10,蛋白胨20,葡萄糖20,琼脂20,pH自然,121 ℃,灭菌15 min。4 ℃保存备用。
1.2.3 WL (Wallerstein laboratory nutrient agar)培养基(g/L): 酵母浸粉4,蛋白胨5,葡萄糖50,琼脂20,储存液A (KH2PO4 13.75 g/L,KCl 10.625 g/L,CaCl2 3.125 g/L,MgSO4·7H2O 3.125 g/L) 40 mL/L,储存液B (FeCl3 2.5 g/L,MnSO4 2.5 g/L) 1 mL/L,储存液C (0.44 g溴甲酚绿溶于10 mL无菌蒸馏水和10 mL 95%乙醇中) 1 mL/L,pH自然,121 ℃,灭菌15 min。4 ℃保存备用。
1.3 刺梨自然发酵 取200 g新鲜、成熟、无霉烂刺梨,无菌水冲洗果实表面泥沙,果实切碎,置于无菌1 L三角瓶中。28 ℃进行静止自然发酵,在自然发酵的1、3、5、15 d分别取样3 mL,命名为F1、F3、F5、F15,每个样本3个平行重复。样品一半用于菌株分离,另一半保存于-80 ℃冰箱,用于高通量测序。
1.4 富集培养 称取5 g刺梨果肉于45 mL YPD液体培养基中,28 ℃、200 r/min培养48 h至液体培养基变浑浊,镜检。取样3 mL,命名为E,3个平行重复,样本一半用于菌株分离,另一半保存于-80 ℃冰箱,用于高通量测序。
1.5 菌株分离与鉴定 刺梨自然发酵液和富集培养液用生理盐水进行梯度稀释,分别吸取0.1 mL的105、106倍稀释液,均匀涂布于含有100 mg/L氯霉素的YPD固体平板上,28 ℃培养48 h。挑取菌落形态不同的单个菌落,每种形态菌落挑选20个,共计100株,镜检,并继续划线于YPD固体平板上,28 ℃培养48 h,直至形成纯克隆为止。
挑取已纯化的单克隆继续划线于WL固体平板上,28 ℃培养5 d,观察菌落颜色和形态。挑取已纯化的单克隆,进行26S rDNA D1\D2区域的菌落PCR扩增。扩增条件为95 ℃ 5 min;95 ℃ 1 min,52 ℃ 1 min,72 ℃ 1 min,循环35次;72 ℃ 10 min。PCR扩增产物送至生工生物工程(上海)股份有限公司进行测序。测序结果提交至GenBank数据库,用BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行相关序列搜索,与GenBank数据库中现有的近缘菌株的序列比对。
1.6 高通量测序与生物信息学分析 按照试剂盒说明书提取刺梨自然发酵液与富集培养液中细胞基因组DNA,利用NanoDrop 2000进行DNA纯度与浓度检测,琼脂糖凝胶电泳进行DNA完整性检测。取适量的DNA模板,以ITS3F和ITS4R为引物进行PCR扩增,PCR产物经琼脂糖凝胶检测后,进行回收和纯化。文库的构建与Miseq测序由上海美吉生物科技有限公司完成。
Miseq测序得到的序列,在上海美吉生物科技有限公司的微生物多样性云分析平台(https://www.i-sanger.com/)上进行数据的生物信息学分析。首先,根据取样的时间和方式,把测序数据的样本分为E、F1、F3、F5和F15共5组。然后,按照相似度为97%,按照最小样本序列数抽评样本序列。按照云平台的操作步骤,进行物种组成分析、样本比较分析、物种差异分析和进化分析等。
2 结果和分析 2.1 刺梨基本指标 本研究所用刺梨为贵农5号(图 1),产自贵州龙里地区,平均重量为(22.35±1.04) g。破碎后的刺梨果渣糖度为(9.84±0.15) Brix,pH为3.53±0.09。
图 1 本研究所用贵农5号刺梨 Figure 1 Guinong 5 R. roxburghii used in this study. |
图选项 |
2.2 测序样本数据分析 刺梨自然发酵液4个样本(F1、F3、F5、F15)和富集培养液1个样本(E),序列质量控制后共得到935198条有效序列,序列的平均长度为322 bp。根据97%的相似度,抽评后的样本共得到182个OTUs (operational taxonomic units,OTUs)。
2.2.1 刺梨自然发酵过程中非酿酒酵母物种组成: 在F1、F3、F5、F15、E,5个样本中共发现81个属,107个种。其中F1包含69个属,88个种;F3包含65个属,81个种;F5包含52个属,68个种;F15包含27个属,35个种;E包含38个属,55个种(图 2)。故随着刺梨的不断发酵,非酿酒酵母种类数不断降低。另外,通过YPD培养基富集培养(E)所得到的非酿酒酵母种类与自然发酵前5 d (F1、F3、F5)相比,非酿酒酵母种类数要低。
图 2 刺梨自然发酵不同时间阶段非酿酒酵母菌群分布Venn图 Figure 2 The non-Saccharomyces yeast community distribution from different natural fermentation stages by Venn diagram. A: genus level; B: species level. |
图选项 |
物种组成结果如图 3所示,在属水平上,样本F1中,丰度最多的是汉逊酵母(Hanseniaspora) (42.73%),其次是生丝毕赤酵母(Hyphopichia) (26.85%)、未培养的真菌(Unclassified_K_Fungi) (16.85%)、毕赤酵母(Pichia) (7.75%)以及威克汉姆酵母(Wickerhamomyces) (1.86%)等;在F3中,最多的是Pichia (40.12%),其次是Hanseniaspora (26.50%)、Hyphopichia (16.32%)、未培养的真菌(Unclassified_K_Fungi) (12.12%)、未培养的酵母(Unclassified_o_Saccharomycetales) (1.91%)以及Wickerhamomyces (1.69%)等;样本F5中,最多的是Pichia (44.23%),其次是Hanseniaspora (17.94%)、Unclassified_K_Fungi (14.41%)、Hyphopichia (13.86%)、Unclassified_o_Saccharomycetales (7.93%)以及Wickerhamomyces (0.74%)等;在样本F15中,最多的是Pichia (47.32%),其次是Unclassified_ o_Saccharomycetales (32.62%)、Hanseniaspora (7.74%)、Unclassified_K_Fungi (6.26%)、覆膜孢酵母(Saccharomycopsis) (4.29%)以及假丝酵母(Candida) (1.10%)等;在样本E中,最多的是Hanseniaspora (51.27%),其次是Hyphopichia (26.08)、Pichia (10.38%)、掷孢酵母属(Sporobolomyces) (5.34%)、Wickerhamomyces (3.13%)等。
图 3 刺梨自然发酵不同时间阶段非酿酒酵母菌群属水平分布柱形图 Figure 3 Relative abundance of non-Saccharomyces yeast community from different natural fermentation stages at the genus level. |
图选项 |
如图 4所示,在种水平上,样本F1中,丰度最多的是汉逊酵母(Hanseniaspora sp.) (42.59%),其次是伯顿丝孢毕赤酵母(H. burtonii) (26.85%)、真菌(Fungi sp.) (18.58%)、克鲁维毕赤酵母(P. kluyveri) (7.52%)以及异常威克汉姆酵母(W. anomalus) (1.81%)等;在F3中,最多的是Hanseniaspora sp. (26.43%),其次是P. sporocuriosa (22.39%)、P. kluyveri (17.73%)、H. burtonii (16.32%)、Fungi sp. (12.07%)、未培养的酵母(Unclassified_o_Saccharomycetales) (1.91%)以及W. anomalus (1.59%)等;样本F5中,最多的是P. sporocuriosa (29.63%),其次是Hanseniaspora sp. (17.92%)、P. kluyveri (14.60%)、Fungi sp. (14.39%)、H. burtonii (13.86%)、Unclassified_o_ Saccharomycetales (7.93%)以及W. anomalus (0.73%)等;在样本F15中,最多的是P. sporocuriosa (37.26%),其次是Unclassified_o_Saccharomycetales (32.62%)、P. kluyveri (10.06%)、Hanseniaspora sp. (7.73%)、Fungi sp. (6.25%)、覆膜孢酵母(Saccharomycopsis vini) (4.00%)以及H. burtonii (0.52%)等;在样本E中,最多的是Hanseniaspora sp. (51.24%),其次是H. burtonii (26.08%)、P. kluyveri (10.37%)、掷孢酵母(Sporobolomyces odoratus) (5.25%)、W. anomalus (3.09%)等。
图 4 刺梨自然发酵不同时间阶段非酿酒酵母菌群种水平分布柱形图 Figure 4 Relative abundance of non-Saccharomyces yeast community from different natural fermentation stages at the species level. |
图选项 |
由图 3和图 4分析结果可知,刺梨果实上优势非酿酒酵母为Hanseniaspora sp.和H. burtonii,在F1中分别占42.59%和26.85%;但随着刺梨自然发酵的不断进行,Hanseniaspora sp.和H. burtonii丰度均不断降低,到发酵的第15天时,Hanseniaspora sp.和H. burtonii的比例已降低至7.73%和0.52%。相反,在刺梨自然发酵过程P. sporocuriosa、Unclassified_o_Saccharomycetales比例不断增加,分别由F1中的0.23%、0.33%增大到F15中的37.26%、32.62%。
2.2.2 刺梨自然发酵过程中非酿酒酵母菌群Alpha多样性分析: Shannon指数和Simpson指数可综合衡量样本中的物种多样性, 通常Shannon指数数值越大,Simpson指数数值越小,表示样本中物种的多样性越高,反之,样本中物种多样性越低[12-13]。如表 2所示,在刺梨自然发酵过程中,F5的Shannon指数数值最大,Simpson指数数值最小,反映了样本F5非酿酒酵母菌OTU的多样性较高,但OTU总数不是最高;F1的Shannon指数数值最小,Simpson指数数值最大,表明样本F1中物种丰富度最低。但OTU数最大,因此,Shannon指数和Simpson指数与OTU数之间不相关。在刺梨自然发酵的4个样本F1、F3、F5和F15中,Shannon指数先增加,后降低。Simpson指数先降低后增加,OTU数一直降低。表明随着刺梨汁的发酵不断进行,非酿酒酵母物种丰度先增大,后降低;此外,刺梨富集培养液中,Shannon指数和Simpson指数以及OTU数与自然发酵的样本相比,整体上Shannon指数低,Simpson指数高,OTU数少。说明刺梨富集培养液中非酿酒酵母菌多样性要低于自然发酵液样本。
表 2. 刺梨自然发酵不同时间阶段非酿酒酵母菌群多样性指数分析结果 Table 2. Diversity index of non-Saccharomyces yeast from different natural fermentation stages
Sample | OTU | Shannon index | Simpson index | Ace index | Chao index | Coverage |
F1 | 93 | 1.612 | 0.283 | 129.799 | 118.091 | 0.999 |
F3 | 91 | 1.913 | 0.195 | 114.562 | 111.653 | 0.999 |
F5 | 77 | 1.934 | 0.184 | 122.722 | 111.541 | 0.999 |
F15 | 39 | 1.691 | 0.258 | 55.882 | 48.556 | 1.000 |
E | 44 | 1.608 | 0.318 | 54.961 | 50.918 | 1.000 |
表选项
Ace指数和Chao指数也可用来衡量样本中的物种的种类。Ace指数和Chao指数越大,则样本中物种种类越多[14-15]。在刺梨自然发酵样本F1、F3、F5和F15中,Ace指数和Chao指数最大的是F1,其OTU数也最大;Ace指数和Chao指数最小的是F15,其OTU数也最小;表明样本的Ace指数和Chao指数与OTU数相关。此外,刺梨富集培养液中Ace指数和Chao指数与自然发酵液样本相比,整体上数值都低于自然发酵液样本,除了F15的Chao指数例外(表 2)。
Coverage是表示样本中低丰度的OTU覆盖情况,数值越大,说明样本中序列被测出来的概率也越高[16-17]。样本E、F15的Coverage值为1,样本F1、F3、F5的Coverage值为0.999,非常接近1 (表 2)。说明本次所有样本的测序结果覆盖低丰度OTU率均较高,测序的结果代表了样本中非酿酒酵母菌的真实状况。
2.2.3 刺梨自然发酵过程中非酿酒酵母菌群差异分析: 采用单因素方差(One-way ANOVA)分析的方法[18],分析了5个样本间物种组成的差异性。结果表明,5个样本间在Hanseniaspora sp.、P. sporocuriosa、H. burtonii、未培养真菌和未培养的酵母组成上具有极其显著的差异(P≤0.001);在P. kluyveri、W. anomalus和S. odoratus种群上,具有极显著的差异(P≤0.01) (图 5)。
图 5 刺梨自然发酵不同时间阶段非酿酒酵母菌群种水平差异性分析 Figure 5 The differences analysis of non-Saccharomyces yeast community from different natural fermentation stages at the species level. **: P≤0.01;***: P≤0.001. |
图选项 |
2.2.4 刺梨自然发酵过程中非酿酒酵母菌群物种进化分析: 由于刺梨自然发酵液4个阶段的样本和富集培养液样本中都存在着未培养的真菌和酵母。采用云分析平台上FastTree软件,对菌体ITS序列,基于邻接法(Neighbor joining)构建物种系统进化发生树。进化分析结果发现未培养的真菌与S. odoratus亲缘关系较近,与Pichia亲缘关系较远;未培养的酵母与歧异假丝酵母(Candida_diversa)亲缘关系最近(图 6)。
图 6 刺梨自然发酵不同时间阶段(1、3、5、15 d)非酿酒酵母菌群种水平进化分析 Figure 6 The phylogenetic analysis of non-Saccharomyces yeast community from different natural fermentation stages (F1, F3, F5, F15) at the species level. |
图选项 |
2.3 刺梨非酿酒酵母的分离与鉴定 WL培养基是一种非选择性培养基,不同的非酿酒酵母在WL培养基上的菌落形态和颜色不同[19-23]。将从YPD培养基上分离得到的100株菌继续划线至WL培养基,根据WL培养基上的菌落与细胞形态特征,从刺梨4个阶段的自然发酵液和富集培养液中共鉴定出20株细菌、80株非酿酒酵母菌。WL培养基上鉴定的非酿酒酵母菌可分为5大类,其菌落与细胞形态如图 7和表 3所示。
图 7 WL培养基上的非酿酒酵母菌落与细胞形态 Figure 7 Colony morphology of non-Saccharomyces yeast isolated from different fermentation stages cultivated with WL medium. A, B: H. uvarum; C, D: H. burtonii; E, F: P. kluyveri; G, H: P. sporocuriosa; I, J: W. anomalus. |
图选项 |
表 3. 酵母菌基于WL培养基的菌落特征 Table 3. Analysis of yeast strains on WL medium based on phenotypes
Colony type | Name | Morphological characteristics on WL medium | References |
Ⅰ | H. uvarum | Colonies were round, dark green, flat, smooth, opaque | [19] |
Ⅱ | H. burtonii | Colonies were round, white, fuzzy, convex | [20] |
Ⅲ | P. kluyveri | White with light green, flat, convex | [21] |
Ⅴ | P. sporocuriosa | Colonies were round, grass green, flat | [22] |
Ⅵ | W. anomalus | Colonies were round, fuzzy, flat, dark green inside | [23] |
表选项
根据分离到的非酿酒酵母在WL上的形态特征,每一类型菌株选取2株,采用NL1和NL4引物,扩增菌株26S rDNA D1/D2区域,进行PCR分析。PCR产物经测序、BLAST比对,发现Ⅰ类为H. uvarum,Ⅱ类为H. burtonii、Ⅲ类为P. kluyveri、Ⅴ类为P. sporocuriosa、Ⅵ类为W. anomalus。
在F1中,优势非酿酒酵母菌株为H. uvarum和H. burtoni;在F3中优势非酿酒酵母为H. uvarum、P. sporocuriosa、P. kluyveri和H. burtoni;样本F5中,优势酵母菌株为P. sporocuriosa、H. uvarum、P. kluyveri和H. burtoni;样本F15中,优势非酿酒酵母为P. sporocuriosa、P. kluyveri和H. uvarum。该结果与采用高通量测序获得的结果较为一致(图 4)。各样本、各菌株分布和变化情况如表 4所示。
表 4. 刺梨自然发酵过程非酿酒酵母菌群组成 Table 4. Composition of non-Saccharomyces cerevisiae during spontaneous fermentation of R. roxburghii
Species | Community compositions/% | |||
F1 | F3 | F5 | F15 | |
H. uvarum | 50 | 25 | 20 | 15 |
H. burtonii | 25 | 20 | 15 | 5 |
P. kluyveri | 15 | 20 | 15 | 15 |
P. sporocuriosa | 0 | 30 | 45 | 65 |
W. anomalus | 10 | 5 | 5 | 0 |
表选项
3 讨论 目前,刺梨果酒酿造菌种均来自于葡萄酒酿造活性干酵母,品种有限、适应性较差,导致市面上刺梨果酒的品种较为单一,品质还有待于进一步改善。本研究采用高通量测序的方法以及传统的纯培养分离法分析了刺梨酿酒过程中非酿酒酵母的多样性,对刺梨非酿酒酵母的选育具有重要的指导意义。
高通量测序克服了在现有条件下某些微生物不能获得分离培养的局限,且成本低,准确率高,目前较多用于鉴定样本微生物的组成[24]。高通量测序在本研究中的结果表明,刺梨果实上存在着丰富的非酿酒酵母菌资源,包含81个属107个种。研究发现,一些非酿酒酵母可分泌一些胞外酶,水解果汁中结合态的底物,有利于增加果酒的香气成分[25];也有一些非酿酒酵母可产生高浓度的甘油、酯类或低浓度的乙酸,增加果酒成分的复杂度[26]。因此,刺梨上丰富的非酿酒酵母菌资源具有较大的开发潜力。酿酒酵母主要进行酒精发酵,并广泛分布于多种水果表面。由于酵母菌群的分布具有时空特异性,还受自然发酵条件、测序深度、分析数据库等因素的影响。以葡萄为例,仅8%左右的中国葡萄品种,1‰左右的意大利葡萄品种能够检测到酿酒酵母菌的存在[27]。在本研究中,采用高通量测序与纯培养法在刺梨上均未检测和分离到酿酒酵母,其原因还需要作进一步的分析。
高通量测序结果还表明,刺梨果实上优势非酿酒酵母菌群为Hanseniaspora sp.和H. burtonii,随着发酵的进行,酒精含量不断增加,二者的比例逐渐降低。暗示这两种酵母菌可能对酒精或酿酒环境较为敏感;相反,P. sporocuriosa含量随着发酵的进行,其含量急剧增加,说明P. sporocuriosa对酒精或酿酒环境具有较好的适应性。因此,在利用酿酒酵母与非酿酒酵母进行刺梨果酒的混合发酵时,应结合非酿酒酵母自身生理特性,选择合适的接种时间和接种方式。
但由于高通量MiSeq测序长度仅限于400 bp左右,加上分类参考数据库序列有限,导致比对出来的序列包含一定比例的未培养的真菌和酵母,特别是在发酵的终点F15中,未培养的真菌和未培养的酵母二者比例之和高达38.87%。这暗示刺梨上可能存在着新的酵母物种,也可能是高通量测序技术本身受限造成的。因此,研究手段和研究内容还有待于进一步的深入研究。
研究表明,自然界中90%以上微生物目前还无法得到纯培养[28]。此外,细胞的纯培养物的获得还受到菌体的丰度、细胞的生理状态、培养基的营养成分等诸多因素的影响[29]。本研究采用传统的微生物分离纯化技术分离鉴定到的酵母菌种类与高通量测序结果之间差别较大,其原因还有待下一步深入研究。微生物功能分析依赖于纯培养技术,因此高通量测序技术并不能完全取代微生物纯培养技术。在今后的研究中,将进一步优化分离与培养条件,从而尽可能地获取更多有应用价值的可培养的酵母菌,并深入分析其对刺梨果酒风味的影响。
References
[1] | Ciani M, Capece A, Comitini F, Canonico L, Siesto G, Romano P. Yeast interactions in inoculated wine fermentation. Frontiers in Microbiology, 2016, 7: 555. |
[2] | del Carmen Portillo M, Mas A. Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. LWT-Food Science and Technology, 2016, 72: 317-321. DOI:10.1016/j.lwt.2016.05.009 |
[3] | Ciani M, Comitini F. Yeast interactions in multi-starter wine fermentation. Current Opinion in Food Science, 2015, 1: 1-6. |
[4] | Pinto C, Pinho D, Cardoso R, Custódio V, Fernandes J, Sousa S, Pinheiro M, Egas C, Gomes AC. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Frontiers in Microbiology, 2015, 6: 905. |
[5] | Morrison-Whittle P, Goddard MR. From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environmental Microbiology, 2018, 20(1): 75-84. DOI:10.1111/1462-2920.13960 |
[6] | Renault P, Coulon J, de Revel G, Barbe JC, Bely M. Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation is linked to specific esters enhancement. International Journal of Food Microbiology, 2015, 207: 40-48. DOI:10.1016/j.ijfoodmicro.2015.04.037 |
[7] | Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin LS. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. International Journal of Food Microbiology, 2015, 199: 33-40. DOI:10.1016/j.ijfoodmicro.2015.01.009 |
[8] | Alonso-del-Real J, Lairón-Peris M, Barrio E, Querol A. Effect of temperature on the prevalence of Saccharomyces Non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition. Frontiers in Microbiology, 2017, 8: 150. |
[9] | Tofalo R, Perpetuini G, Di Gianvito P, Arfelli G, Schirone M, Corsetti A, Suzzi G. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation. Journal of Applied Microbiology, 2016, 120(6): 1574-1584. DOI:10.1111/jam.13113 |
[10] | Liu MH, Zhang Q, Zhang YH, Lu XY, Fu WM, He JY. Chemical analysis of dietary constituents in Rosa roxburghii and Rosa sterilis fruits. Molecules, 2016, 21(9): 1204. DOI:10.3390/molecules21091204 |
[11] | Chen GJ, Kan J. Characterization of a novel polysaccharide isolated from Rosa roxburghii Tratt fruit and assessment of its antioxidant in vitro and in vivo. International Journal of Biological Macromolecules, 2018, 107: 166-174. DOI:10.1016/j.ijbiomac.2017.08.160 |
[12] | Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7(1): 10541. DOI:10.1038/ncomms10541 |
[13] | Santini L, Belmaker J, Costello MJ, Pereira HM, Rossberg AG, Schipper AM, Ceau?u S, Dornelas M, Hilbers JP, Hortal J, Huijbregts MAJ, Navarro LM, Schiffers KH, Visconti P, Rondinini C. Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213: 341-350. DOI:10.1016/j.biocon.2016.08.024 |
[14] | Lei YP, Xiao YL, Li LF, Jiang CQ, Zu CL, Li T, Cao H. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China. Journal of Microbiology, 2017, 55(5): 349-356. DOI:10.1007/s12275-017-6242-9 |
[15] | Zeng SZ, Huang ZJ, Hou DW, Liu J, Weng SP, He JG. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ, 2017, 5: e3986. DOI:10.7717/peerj.3986 |
[16] | Zhao P, Xia WX, Wang JB, Zhang XG, Zhuang Y, Lu QX, Chen SS. Bacterial diversity of grapevine rhizosphere soil revealed by high-throughput sequence analysis from different vineyards in China. Journal of Biobased Materials and Bioenergy, 2018, 12(2): 194-202. DOI:10.1166/jbmb.2018.1773 |
[17] | Shaffer JA, Munsch S, Juanes F. Functional diversity responses of a nearshore fish community to restoration driven by large-scale dam removal. Estuarine, Coastal and Shelf Science, 2018, 213: 245-252. DOI:10.1016/j.ecss.2018.08.030 |
[18] | Bikoff JB, Gabitto MI, Rivard AF, Drobac E, Machado TA, Miri A, Brenner-Morton S, Famojure E, Diaz C, Alvarez FJ, Mentis GZ, Jessell TM. Spinal inhibitory interneuron diversity delineates variant motor microcircuits. Cell, 2016, 165(1): 207-219. DOI:10.1016/j.cell.2016.01.027 |
[19] | Zhang JJ, Yang X, Jiao J, Chen JY, He PX, Chi L, Zhang WY, Liu CH. Biodiversity of yeast strains on grape surface from different Cabernet Sauvignon clones. China Brewing, 2017, 36(6): 126-131. (in Chinese) 张俊杰, 杨旭, 焦健, 陈锦永, 何培新, 迟雷, 张文叶, 刘崇怀. 不同株系赤霞珠葡萄表皮酵母菌的多样性研究. 中国酿造, 2017, 36(6): 126-131. |
[20] | Limtong S, Kaewwichian R, Jindamorakot S, Yongmanitchai W, Nakase T. Candida wangnamkhiaoensis sp. nov., an anamorphic yeast species in the Hyphopichia clade isolated in Thailand. Antonie van Leeuwenhoek, 2012, 102(1): 23-28. DOI:10.1007/s10482-012-9709-z |
[21] | Radler F, Pfeiffer P, Dennert M. Killer toxins in new isolates of the yeasts Hanseniaspora uvarum and Pichia kluyveri. FEMS Microbiology Letters, 1985, 29(3): 269-272. |
[22] | Péter G, Tornai-Lehoczki J, Dlauchy D, Vitányi G. Pichia sporocuriosa sp. nov., a new yeast isolated from rambutan. Antonie van Leeuwenhoek, 2000, 77(1): 37-42. DOI:10.1023/A:1002095523955 |
[23] | Sabel A, Martens S, Petri A, K?nig H, Claus H. Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Annals of Microbiology, 2014, 64(2): 483-491. DOI:10.1007/s13213-013-0678-x |
[24] | Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Molecular Cell, 2015, 58(4): 586-597. DOI:10.1016/j.molcel.2015.05.004 |
[25] | López MC, Mateo JJ, Maicas S. Screening of β-glucosidase and β-xylosidase activities in four non-Saccharomyces yeast isolates. Journal of Food Science, 2015, 80(8): C1696-C1704. DOI:10.1111/1750-3841.12954 |
[26] | Padilla B, Zulian L, Ferreres à, Pastor R, Esteve-Zarzoso B, Beltran G, Mas A. Sequential inoculation of native non-Saccharomyces and Saccharomyces cerevisiae strains for wine making. Frontiers in Microbiology, 2017, 8: 1293-1293. DOI:10.3389/fmicb.2017.01293 |
[27] | Brysch-Herzberg M, Seidel M. Yeast diversity on grapes in two German wine growing regions. International Journal of Food Microbiology, 2015, 214: 137-144. DOI:10.1016/j.ijfoodmicro.2015.07.034 |
[28] | Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. Journal of Microbiology, 2020, 58(3): 176-192. DOI:10.1007/s12275-020-9525-5 |
[29] | Li J, Hu WZ, Huang XJ, Xu YP. Investigation of yeast population diversity and dynamics in spontaneous fermentation of Vidal blanc icewine by traditional culture-dependent and high-throughput sequencing methods. Food Research International, 2018, 112: 66-77. DOI:10.1016/j.foodres.2018.06.011 |