张永杰1, 崔宁波1, 张丽珍1, 甄晓君2, 柳青山3
1. 山西大学生命科学学院, 山西 太原 030006;
2. 山西圣堂食品科技有限公司, 山西 长治 047500;
3. 山西省农业科学院高粱研究所, 山西 榆次 030600
收稿日期:2019-08-15;修回日期:2019-11-19;网络出版日期:2019-12-02
基金项目:国家自然科学基金(31872162);山西省重点研发计划重点项目(201703D211010);山西省回国留学人员科研资助项目(2017-015)
*通信作者:张永杰, E-mail:zhangyj2008@sxu.edu.cn.
摘要:[目的] 了解生料酿醋不同阶段的真菌群落结构及其变化规律,为生料酿醋工艺优化提供理论指导。[方法] 从山西一家生料酿醋企业采集原料、麸曲、发酵缸醋醅、熏醋样、淋醋样等涉及生料酿醋各阶段的样品共51份,扩增真菌ITS1区序列并利用高通量测序技术分析真菌多样性。[结果] 除5份样品未扩增成功外,在剩余46份样品中共检测到489个真菌OTU,以子囊菌为主(占88.3%)。原料、麸曲、发酵缸醋醅、熏醋样、淋醋样等不同组别间在真菌群落结构方面存在显著差异。原料和麸曲中的真菌物种丰富度最低,发酵缸醋醅的真菌物种丰富度最高,熏醋样和淋醋样中的真菌物种丰富度又有所降低。原料和麸曲中的优势真菌分别为酿酒酵母和黑曲霉,是发酵阶段真菌的重要来源,但发酵缸醋醅中也检测到大量可能来源于发酵室环境的真菌。发酵缸醋醅在不同发酵时期间也存在明显的真菌群落结构差异,并可据此划分成发酵前期(包括发酵第2-13天的样品)和发酵后期(包括发酵第17-46天的样品)。酿酒酵母和亮白曲霉的丰度在发酵前期显著高于发酵后期,而黑曲霉、一种小戴卫霉科真菌等的丰度在发酵后期显著高于发酵前期。[结论] 生料酿醋的不同阶段和发酵缸醋醅发酵的不同时期,其真菌群落结构都存在明显差异。酿酒酵母和黑曲霉是发酵阶段的优势真菌。本研究为生料酿醋工艺优化提供了理论依据。
关键词:生料酿醋真菌多样性高通量测序黑曲霉酿酒酵母
Fungal diversity during raw vinegar brewing process as revealed by high-throughput sequencing
Zhang Yongjie1, Cui Ningbo1, Zhang Lizhen1, Zhen Xiaojun2, Liu Qingshan3
1. School of Life Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China;
2. Shengtang Food Technology Co., Ltd., Changzhi 047500, Shanxi Province, China;
3. Sorghum Research Institute, Shanxi Academy of Agriculture Sciences, Yuci 030600, Shanxi Province, China
Received: 15 August 2019; Revised: 19 November 2019; Published online: 2 December 2019
*Corresponding author: Yongjie Zhang, E-mail:zhangyj2008@sxu.edu.cn.
Foundation item: Supported by the National Natural Science Foundation of China(31872162), by the Key Research & Development Projects in Shanxi Province(201703D211010) and by the Research Project Supported by Shanxi Scholarship Council of China(2017-015)
Abstract: [Objective] To understand the structure and dynamics of fungal community during raw vinegar brewing. [Methods] In total 51 samples including raw materials, starter, fermenting samples in urns, smoking cupei and leaching cupei were collected from a raw vinegar making enterprise in Shanxi Province, and fungal diversity was analyzed by high throughput sequencing of ITS1 regions. [Results] Except 5 samples having failure amplifications, 489 fungal OTUs were detected in the remaining 46 samples, dominated by Ascomycetes (88.3%). There were significant fungal community differences among groups. The species richness was the lowest in raw materials and starter, the highest in fermenting samples, and medium in smoking and leaching cupei. The dominant fungi from raw materials and starter were Saccharomyces cerevisiae and Aspergillus niger, respectively, which were important inocula for fermentation. There were also obvious fungal community variations during fermentation in urns, which were further divided into early (F2 to F13) and late (F17 to F46) fermentation stages. The abundance of S. cerevisiae and Aspergillus candidus was significantly higher in the early fermentation stage, whereas that of A. niger and Davidiellaceae sp. was significantly higher in the late fermentation stage. [Conclusion] There are significant fungal community variations among different brewing steps and among different fermentation stages in urns. S. cerevisiae and A. niger represent the main fungi contributing to raw vinegar fermentation. This study provides a theoretical basis for the optimization of raw vinegar brewing process.
Keywords: raw vinegar brewingfungal diversityhigh-throughput sequencingAspergillus nigerSaccharomyces cerevisiae
食醋是全球消费量最大的调味品之一,也是我国传统的调味品,含有丰富的营养成分,具有独特的药理作用[1]。我国是世界上最早使用谷物酿醋的国家,不同地域形成具有独特风味和口感的名牌醋,其中最具代表性的就是被称为“中国四大名醋”的山西老陈醋、江苏镇江香醋、福建永春老醋和四川保宁麸醋[2]。山西老陈醋是我国北方地区最著名、最具代表性的食醋。它以高粱和麸皮为主要原料,以稻壳和谷壳为辅料,以大麦、豌豆为原料制作的大曲作为糖化发酵剂,经酒精发酵后采用固态醋酸发酵,再经熏醅、淋醋、陈酿等工艺酿制而成[3]。纯正的山西老陈醋需经过“蒸、酵、熏、淋、陈”五道工序,产品具有“色、香、浓、醇、酸”的特点[4]。为应对世界能源危机、体现节能环保的理念,在20世纪70年代生料酿醋法应运而生,最先投产于山西省长治市,现已被全国多地的酿醋企业所采用[5-7]。生料酿醋工艺与一般酿醋方法(熟料酿醋)的不同之处是原料经过粉碎后,不加蒸煮,而是直接与麸曲、水按比例混合装缸进行糖化分解、酒精发酵和醋酸发酵[8]。与熟料酿醋相比,生料酿醋节省了昂贵的蒸煮设备、燃料和劳动力,降低了成本[9]。
在传统食醋酿造过程中,独特的生产工艺和地理气候形成独特的风味,多种微生物类群的相互作用共同决定了食醋的产量和品质。传统食醋的酿造多为开放式多菌种混合发酵方式,酿醋原料的复杂性和环境的开放性造就了酿醋微生物群落的复杂性和多样性。因此,对传统食醋酿造过程中发酵微生物的研究显得尤为重要。多年来,科研人员已对多种名优食醋中参与发酵的微生物进行过研究,使用的研究方法既有传统的分离培养方法,也有基于DGGE(变性梯度凝胶电泳)、高通量测序等的非培养方法[10-18]。
生料酿醋由于在原料处理上不同于熟料酿醋,因此,生料酿醋微生物群落的组成结构及演替可能与熟料酿醋存在差异。目前有关酿醋微生物的研究大多针对熟料酿醋,而对生料酿醋中微生物的关注较少。为此,我们从位于山西省长治市的圣堂食品科技有限公司(晋东南地区一家典型的进行生料酿醋的企业)采集涉及生料酿醋各阶段的样品,基于Illumina Miseq PE300平台进行高通量测序,通过分析微生物群落结构的组成和变化规律为后续生料酿醋工艺优化供理论指导。本文报道生料醋酿造过程中真菌多样性及其变化规律的研究结果。
1 材料和方法 1.1 研究材料 2018年5月22日在山西省圣堂食品科技有限公司采集原料(Y)、麸曲(Q)、发酵缸醋醅(F)、熏醋样(X)和淋醋样(L)等涉及生料酿醋全过程的17组共51份样品,每组3份平行样(表 1)。其中,发酵缸醋醅包括入缸发酵起第2、6、10、13、17、22、26、29、32、35、39、46天时的样品,从发酵料表面中部往下30 cm深处采集约500 g样品装入无菌自封袋内。为比较发酵缸顶部和底部的真菌群落结构是否相同,对于发酵第26天的样品,还另外采集了刚翻过醅的样品(F26D,代表缸底的样品)。采集的样品置于车载冰箱中,当日运回实验室,-80 ℃超低温冰箱保藏备用。
表 1. 样品信息表 Table 1. Information of samples used in this study
Sample codea | No.samplesb | Source | No.fungal speciesc | No.fungal OTUsc |
Y | 3 | Raw material | 4-10 | 5-10 |
Q | 3 | Starter | 7-9 | 8-10 |
F2 | 3 | 2 d of fermentation | 32-38 | 40-46 |
F6 | 3 | 6 d of fermentation | 40-45 | 51-63 |
F10 | 3 | 10 d of fermentation | 41-57 | 57-73 |
F13 | 3 | 13 d of fermentation | 45-53 | 62-71 |
F17 | 3 | 17 d of fermentation | 48-86 | 62-108 |
F22 | 3 | 22 d of fermentation | 42-55 | 52-66 |
F26 | 3 | 26 d of fermentation | 49-73 | 62-87 |
F26D | 3 | 26 d of fermentation | 40-71 | 43-78 |
F29 | 3 | 29 d of fermentation | 32-44 | 38-55 |
F32 | 3 | 32 d of fermentation | 19-47 | 22-56 |
F35 | 3(2) | 35 d of fermentation | 37-72 | 48-92 |
F39 | 3(2) | 39 d of fermentation | 32-76 | 39-100 |
F46 | 3(2) | 46 d of fermentation | 22-26 | 28-33 |
X | 3(1) | Smoking cupei | 24 | 29 |
L | 3 | Leaching cupei | 13-47 | 16-58 |
Total | 51(46) | 311 | 489 | |
a For raw materials(Y), starter(Q), smoking cupei(X) and leaching cupei(L), numbers 1, 2 or 3 were added after the sample code to represent each of the three parallel samples(e.g., Y1, Y2, Y3). For fermenting samples(F), letters A, B or C were added after the sample code to represent each of the three parallel samples(e.g., F2A, F2B, F2C). b Three parallel samples were collected from each group, but PCR amplification failed for five out of the total samples. The number of successful samples was indicated in parentheses. Other samples not specially noted were all successfully amplified and sequenced. c The number of fungal species detected was smaller than that of OTUs probably because 1) there was a high intra-specific variation(larger than 3%) in certain species, and 2) some OTUs could only be identified to genus or above-genus levels. Therefore, according to the 97% sequence similarity threshold, some different OTUs have the same name in the final taxonomy assignment results. |
表选项
1.2 DNA提取、PCR扩增与测序 称取0.25 g样品,采用试剂盒PowerSoil DNA Isolation kit (MOBIO Laboratories,Inc.美国)提取总DNA,然后使用引物ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS2R(5′-GCTGCGTTCTTCATCGATGC-3′)扩增真菌ITS1区域[19]。扩增采用20 μL反应体系:2 μL 10× Buffer,2 μL 2.5 mmol/L dNTPs,0.8 μL ITS1F (5 μmol/L),0.8 μL ITS2R(5 μmol/L),0.2 μL TaKaRa rTaq DNA聚合酶,0.2 μL BSA,10 ng模板DNA,补ddH2O至20 μL。每个样本3次重复。将同一样本的PCR产物混合后用2%琼脂糖凝胶电泳检测,使用AxyPrep DNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物。将PCR产物用QuantiFluor?-ST蓝色荧光定量系统(Promega公司)进行定量检测后构建Miseq测序文库,基于PE300策略进行测序。高通量测序工作由上海美吉生物医药科技有限公司(上海,中国)完成。
1.3 数据分析 数据分析在上海美吉生物医药科技有限公司开发的I-Sanger云平台(http://journals.im.ac.cn/html/actamicrocn/2020/7/www.i-sanger.com)上完成。对于测序得到的双端原始序列数据,先过滤reads尾部质量值低于20的碱基及质控后短于50 bp的reads、去除含N碱基的reads,然后将正、反向测序得到的reads对应拼接起来,根据序列首尾两端的barcode和引物序列区分样品,并校正序列方向,从而得到有效序列。对有效序列依据97%相似水平划分OUT (operational taxonomic unit,可操作分类单元),并生成OTU表。通过ITSx软件[20]分析各OTU的代表序列,将找出的非真菌OTU从OTU表中去掉,同时过滤掉序列数少于10的OTU。进行α和β多样性分析时,按照最小样本序列数进行抽平,除特殊说明外,均在OTU水平进行分析。进行ANOSIM和ADONIS组间差异比较时,使用Bray curtis算法计算样品间的距离矩阵。
2 结果和分析 2.1 样本序列信息及真菌组成 在本研究所用的51份样品中,有5份样品(即F35C、F39B、F46B、X1和X2)因扩增真菌nrDNA ITS1片段目的条带太弱未能达到建库要求,因此只对剩余46份样品进行了高通量测序。从这46份样品中各得到3.1-7.3万条有效序列。由稀释曲线可知,随着序列数的增加,各样品可检测到的OTU数趋于平缓(图 1),说明本次测序的深度足够,按最小样本序列数(即31035)抽平足以反映各样品中的物种多样性。过滤掉非真菌OTU及序列数小于10的OTU后,从46份样品中共检测到489个真菌OTU,隶属于至少6门、25纲、62目、123科、206属、311种(部分OTU只能确定到属或属以上分类水平)。每份样品含有的OTU数是5-108个(平均50个OTU/样品),其中,在麸曲(Q,8-10个OTU/样品)和原料(Y,5-10个OTU/样品)中检测到的OTU数最少(表 1)。唯一在所有样品中都存在的真菌是黑曲霉(Aspergillus niger),但其在不同类型样品中的丰度存在差异。具体来讲,在麸曲、发酵缸醋醅(F)和熏醋样(X)中有较多的黑曲霉序列(385-65033条序列/样品;占各样品总序列数的比例0.59%-99.9%),尤其是在麸曲中黑曲霉的比例高达99.9%,而在原料和淋醋样(L)中黑曲霉序列较少(4-103条序列/样品;比例0.01%-0.33%)。
图 1 稀释曲线 Figure 1 Rarefaction curve of all samples. Y, Q, F, L are the codes for each category of samples (see Table 1). |
图选项 |
2.2 发酵缸顶部和底部真菌群落结构的比较 利用发酵第26天的样品比较了翻醅(代表缸底部)与未翻醅(代表缸顶部)2组样品间的真菌群落结构,发现它们之间在α和β多样性分析中均无显著差异(表 2,表 3)。这也说明从距发酵料表面30 cm深处采集的样品可以代表整个发酵缸的真菌群落结构。在后面的分析中,我们只用未翻醅的样品代表第26天的样品跟其他组别的样品进行比较分析。
表 2. 翻醅与未翻醅样品间α多样性指数比较 Table 2. Comparison between turning-over and unturned samples at α-diversity indices
Estimators | F26 | F26D | P-value |
Sobs | 71±13.89 | 63±18.03 | 0.58 |
Ace | 101.13±7.39 | 72.76±27.17 | 0.16 |
Chao | 82.00±10.90 | 69.08±22.92 | 0.43 |
Simpsoneven | 0.1±0.08 | 0.22±0.13 | 0.73 |
Coverage | 1.00 | 1.00 | 0.25 |
Shannon | 3.08±0.32 | 3.05±0.45 | 0.92 |
Simpson | 0.08±0.04 | 0.10±0.06 | 0.78 |
F26 represents the group of samples that were not turned over, and F26D represents the group of samples that were turned over. Sobs, Chao and Ace are indices reflecting community richness; coverage is an index reflecting community coverage; Simpsoneven is an index reflecting community evenness; Shannon and Simpson are indices reflecting community diversity. |
表选项
表 3. 不同类型样品间β多样性水平的比较 Table 3. Comparison among different types of samples at β-diversity level
Items in comparison | No. groups | ANOSIM | ADONIS | ||
R | P | R2 | P | ||
F26 vs. F26D | 2 | -0.185 | 0.697 | 0.160 | 0.800 |
Y, Q, F | 3 | 0.240 | 0.006 | 0.187 | 0.002 |
Y, Q, F, L | 4 | 0.500 | 0.001 | 0.273 | 0.001 |
EF vs. LF | 2 | 0.825 | 0.001 | 0.463 | 0.001 |
F2-F46 | 12 | 0.689 | 0.001 | 0.723 | 0.001 |
Y, Q, F, L are the codes for each category of samples (see Table 1). There was only one effective sample in the smoked sample group (X), so it was not involved in ANOSIM/ADONIS analysis. F26 and F26D represent the samples collected on the 26th day of fermentation, which were turned over (F26D) or not turned over (F26). EF and LF represent early-fermentation (F2-F13) and late-fermentation (F17-F46) groups, respectively, as shown in Figure 3. The R2 value in ADONIS analysis represents the interpretation of different grouping factors for sample differences. The larger the R2 is, the higher the interpretation of different grouping factors for sample differences. |
表选项
图 3 原料(Y)、麸曲(Q)和发酵缸醋醅(F)中真菌的比较 Figure 3 Comparison of fungi in raw material (Y), starter (Q) and fermentation-stage samples (F). A: Venn diagram among Y, Q and F at the species level; B: Circos plot showing the corresponding relationships between the abundance of species and samples. All species with an abundance of lower than 0.1 are combined as "others". |
图选项 |
2.3 生料酿醋不同阶段真菌群落结构的比较 我们比较了原料(Y)、麸曲(Q)、发酵缸醋醅(F)、熏醋样(X)和淋醋样(L)的真菌群落结构。从门水平看(图 2-A),原料和麸曲中几乎全是子囊菌;在发酵缸醋醅和熏醋样中子囊菌仍占优势,但也存在部分担子菌和接合菌;在淋醋样中,担子菌的比例超过了子囊菌。从属和种水平看(图 2B-C),原料和麸曲中虽都是子囊菌,但优势真菌种类不同,分别是酿酒酵母(Saccharomyces cerevisiae)和黑曲霉;发酵缸醋醅含有的真菌种类最为丰富,以酿酒酵母和黑曲霉的比例最高(分别为27.8%和27.5%);熏醋样中曲霉属Aspergillus的比例仍然较高(26.2%),主要是黑曲霉(12.5%)和帚状曲霉(Aspergillus penicillioides,11.9%),但酿酒酵母属真菌的比例下降很多(仅占0.5%);淋醋样中的优势物种为一种毛孢子菌属真菌(Trichosporon sp.,占比57.6%)和一种青霉菌(Penicillum paneum,占比27.8%),曲霉属真菌的比例进一步下降到1%,酿酒酵母属真菌完全消失。该结果反映了生料酿醋不同阶段真菌群落结构的动态变化。不同组别的样品间在真菌群落结构方面差异显著(表 3)。
图 2 生料酿醋不同阶段的真菌群落组成 Figure 2 Composition of fungal community at different stages of raw vinegar production. A: Comparison at the phylum level; B: Comparison at the genus level; C: Comparison at the species level. Y, Q, F, X and L are the codes for each category of samples (see Table 1). All fungal taxa with an abundance of lower than 0.1 are combined as "others". Green and red lines connect Aspergillus and Saccharomyces, respectively, among different sample groups in B, and they connect Aspergillus niger and Saccharomyces cerevisiae among different sample groups in C. |
图选项 |
为了解发酵阶段真菌的来源,我们比较了原料、麸曲和发酵缸醋醅中存在的真菌。除仅存于麸曲中的Ceratocystiopsis minima外,其他所有在原料和麸曲中检测到的真菌都可以在发酵缸醋醅中检测到,但这些在原料和麸曲中存在的真菌仅占发酵缸醋醅真菌物种总数的7%(20/288)(图 3-A)。也就是说,大量参与发酵的真菌种类可能来源于发酵室环境中。来源于原料的酿酒酵母和来源于麸曲的黑曲霉是发酵阶段的优势真菌,分别占发酵缸醋醅总序列数的25%和29%(图 3-B)。
2.4 发酵阶段不同发酵时期真菌群落结构的比较 对采自发酵缸不同时期的样品进行层级聚类分析,发现这些样品可明显聚成发酵前期和发酵后期2个分支(图 4)。发酵前期包括F2、F6、F10和F13的所有样品;发酵后期包括F17、F22、F26、F29、F32、F35、F39、F46的所有样品。从群落组成图中也能看出类似的规律(图 5)。在发酵前期,酿酒酵母是优势真菌(占比在50%以上),但随着发酵的进行,酿酒酵母所占的比例逐渐减少,而黑曲霉和亮白曲霉(Aspergillus candidus)所占的比例在逐渐增大。在发酵后期,黑曲霉(平均占比35%)和一种小戴卫霉科的真菌(Davidiellaceae sp.)(平均占比11%)成为了优势真菌。
图 4 发酵阶段所有样本的层级聚类分析 Figure 4 Hierarchical clustering tree of all samples from the fermentation stage. |
图选项 |
图 5 发酵阶段各时间点的真菌群落组成 Figure 5 Composition of fungal community at different time points during fermentation. |
图选项 |
发酵缸不同组别样品间在真菌群落结构方面存在显著差别(P < 0.001)。具体来讲,发酵前期和发酵后期两组样品间的差异可解释46.3%的样品差异;按发酵时间所划分的12组样品间(F2-F46)的差异可解释72.3%的样品差异(表 3)。酿酒酵母和亮白曲霉的丰富度在发酵前期显著高于发酵后期,而黑曲霉、小戴卫霉科真菌、紫红曲霉Monascus purpureus、曲霉属其他真菌等的丰富度在发酵后期显著高于发酵前期(图 6)。
图 6 发酵前期与发酵后期差异物种检验 Figure 6 Fungal species showing significant difference between early and late fermentation groups. Y axis represents different species, and X axis represents the relative abundance percent of species in each group. Only the first 15 species ranked in abundance are displayed. *: 0.01 < P≤0.05; **: 0.001 < P≤0.01;***: P≤0.001. |
图选项 |
3 讨论 我国传统食醋多采用开放式的多菌种混合固态发酵工艺,发酵过程中微生物群落不断消长演替,发酵微生物群落组成及其变化对食醋品质和风味有重要影响。本研究利用Illumina高通量测序技术全面分析了生料酿醋各阶段的真菌菌群的组成结构及变化规律,发现参与生料酿醋的关键真菌与熟料酿醋无本质区别,都是以黑曲霉和酿酒酵母为优势真菌。在食醋酿造过程中,霉菌的主要功能是分泌大量的酶,将淀粉、蛋白质等大分子物质水解为糊精、葡萄糖、多肽和氨基酸等小分子物质;酵母菌的主要功能是将单糖转化为乙醇和二氧化碳(酒精发酵阶段),到醋酸发酵阶段后,随着酵母菌在醋醅中自然降解,其中的一些营养物质也释放到醋醅中,能够被其他微生物利用[12]。相同的关键微生物暗示着生料醋与熟料醋在品质上应该也是接近的。已有报告指出,生料醋不仅质量上符合国家标准,而且具有能耗低、提高出醋率、同样保持山西醋特有风味等特点[21]。然而,生料醋与熟料醋酿造过程中的真菌群落结构也存在差异之处。有研究利用DGGE技术分析熟料醋酿造过程中的真菌组成[14, 16],发现酿酒酵母属和复膜孢酵母属Saccharomycopsis是整个发酵阶段的优势真菌属,而曲霉属仅在酒精发酵阶段检测到,未能在醋酸发酵阶段检测到。本研究显示,曲霉属真菌始终以较高的比例存在于生料醋的整个发酵阶段(图 5),而复膜孢酵母属仅以极低的比例(< 0.05%)存在于个别样品中。目前,尚未见通过高通量测序技术分析山西老陈醋熟料酿造过程中真菌多样性变化的报道。
本研究发现原料和麸曲是生料醋发酵阶段重要的真菌来源,分别为发酵阶段提供了酿酒酵母和黑曲霉这两种最关键的真菌。原料中酿酒酵母占比达到99.7%,麸曲中黑曲霉占比达到99.8%。这跟实际生产中在原料准备和麸曲制作时分别人为添加了酿酒酵母和黑曲霉有直接关系。在生料醋的发酵阶段,每隔几天要进行一次翻醅操作。本研究对发酵缸顶部和底部的真菌群落结构进行了比较,发现它们无显著差异。这说明翻醅有助于改善发酵缸中的微环境,确保发酵缸不同部位的醋醅具有较一致的菌群结构。在发酵阶段样品中还检测到大量在原料和麸曲中不存在的真菌,其可能来源于翻醅工具或发酵室环境。传统食醋酿造是在开放的环境下进行的,来自环境的微生物在发酵过程中也起到了重要的作用。
食醋酿造要经历糖化、酒精发酵和醋酸发酵3个生化过程,这3个发酵过程都是在不同微生物分泌的酶作用下进行的:曲霉菌分泌淀粉酶,使淀粉转化为糖;酵母菌分泌酒化酶,使糖转化为酒精;醋酸菌分泌氧化酶,使酒精转化为醋酸[9]。生料酿醋的发酵周期(约50 d)要比熟料酿醋(20-30 d)长,这3个反应阶段的划分不是很明显,在发酵后期,甚至可同时发生糖化、酒化和醋酸发酵[22]。在本研究的生料醋生产中,发酵是一直在发酵缸中进行的,醋醅入缸起的前7 d用塑料布密闭缸口,不进行翻醅操作,之后约3 d翻1次醅。根据真菌群落结构,我们能够将生料酿醋的发酵阶段划分成发酵前期(从入缸开始到发酵15 d左右)和发酵后期(从入缸发酵15 d左右到发酵结束),二者在真菌群落结构方面存在显著差异,大体对应生产中的糖化/酒精发酵阶段和醋酸发酵阶段。发酵前期的优势真菌是酿酒酵母和黑曲霉,这个时期应该主要是进行糖化和酒精发酵;发酵后期酿酒酵母几乎找不到了,以黑曲霉和一种小戴卫霉科的真菌为优势真菌,这个时期应该主要是进行醋酸发酵。然而,醋酸发酵阶段起主要作用的应该是醋酸菌、乳酸菌等细菌,故而,发酵后期不同组别样品间在真菌群落组成方面有较大的波动(图 5)。在发酵后期,由于仍有较多的黑曲霉,因此仍可能发生糖化分解;由于酿酒酵母缺失,可能由某些产乙醇的细菌代替酿酒酵母进行酒化作用。
如前所述,在传统食醋酿造过程中,细菌也起着重要的作用,尤其是醋酸菌和乳酸菌。醋酸菌的主要功能是氧化糖和乙醇,可将乙醇氧化为高浓度的醋酸,同时还能生成大量的有机酸;乳酸菌的主要功能是产生大量的乳酸,能够缓解食醋剌激的酸味,改善口感(即赋予醋特殊柔和香味),同时还可促进酵母菌的生长,提高发酵酒醪的酒度,从而提高醋的产量。已有研究利用DGGE、高通量测序等技术分析了山西老陈醋熟料酿造过程中的细菌多样性[11, 14, 16, 23]。除醋酸菌和乳酸菌外,发现Pantoea、Pediococcus、Rhizobium、Komagataeibacter(以前叫Gluconacetobacter)、Kroppenstedtia、Propionibacterium等属的细菌也比较重要,而且不同阶段的优势细菌类群也存在差异[11, 14, 16, 23]。可以预期的是,参与生料醋酿造的细菌既有与熟料醋相同的关键细菌类群,也可能具有一些独特的细菌类群。本文只报道了生料酿醋酿造过程中真菌多样性的变化情况,有关细菌多样性的变化情况将另文发表。
References
[1] | 张宝善. 食醋酿造学. 北京: 科学出版社, 2014. |
[2] | Dong E. Four famous vinegar in China. Friend of Science Amateurs, 2006(10): 37. (in Chinese) 东耳. 中国四大名醋. 科学之友, 2006(10): 37. |
[3] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19777-2013地理标志产品山西老陈醋.北京:中国标准出版社, 2014. |
[4] | Liu RP, Han BY. Focus on Shanxi aged vinegar. Farm Products Processing, 2011(8): 4-5. (in Chinese) 刘润平, 韩葆颖. 聚焦山西老陈醋. 农产品加工, 2011(8): 4-5. |
[5] | Liu CG. Thirty-year's retrospection of vinegar production with uncooked raw materials. China Brewing, 2003(1): 41-42. (in Chinese) 刘传刚. 生料制醋三十年回顾. 中国酿造, 2003(1): 41-42. DOI:10.3969/j.issn.0254-5071.2003.01.016 |
[6] | Li YJ. Study on the new technology of making raw vinegar by pre-liquid and post-solid method. Jiangsu Condiment and Subsidiary Food, 1998(3): 11-12. (in Chinese) 李彦杰. 前液后固酶法生料制醋新工艺的研究. 江苏调味副食品, 1998(3): 11-12. |
[7] | Zhang W. Raw vinegar brewing using enzyme preparation, ventilation and reflux. Jiangsu Condiment and Subsidiary Food, 1997(3): 10-12. (in Chinese) 张伟. 酶制剂生料通风回流制醋工艺. 江苏调味副食品, 1997(3): 10-12. |
[8] | Li X, Luo CX. Brewing vinegar with raw material. Chinese Condiment, 2001(12): 3-6. (in Chinese) 李祥, 罗仓学. 生料酿醋. 中国调味品, 2001(12): 3-6. DOI:10.3969/j.issn.1000-9973.2001.12.001 |
[9] | Ruan CB, He J, Li WH, Tu GQ. Review on application of fermentation technique using uncooked raw material. China Brewing, 2010(1): 4-8. (in Chinese) 阮彩彪, 何建, 李文华, 涂国全. 生料发酵技术应用概述. 中国酿造, 2010(1): 4-8. DOI:10.3969/j.issn.0254-5071.2010.01.003 |
[10] | Nie ZQ, Han Y, Zheng Y, Shen YB, Wang M. Metagenomic analysis of microbial diversity in the traditional vinegar fermentation process. Food Science, 2013, 34(15): 198-203. (in Chinese) 聂志强, 韩玥, 郑宇, 申雁冰, 王敏. 宏基因组学技术分析传统食醋发酵过程微生物多样性. 食品科学, 2013, 34(15): 198-203. DOI:10.7506/spkx1002-6630-201315041 |
[11] | Du HF, Nie ZQ, Liu X, Wang M, Zheng Y. Study on the relationship between bacterial community composition and changes of organic acids during fermentation process of Shanxi Aged Vinegar. China Condiment, 2015, 40(7): 26-31, 42. (in Chinese) 杜宏福, 聂志强, 刘贤, 王敏, 郑宇. 山西老陈醋发酵过程中细菌群落组成与有机酸变化的关系研究. 中国调味品, 2015, 40(7): 26-31, 42. DOI:10.3969/j.issn.1000-9973.2015.07.005 |
[12] | Nie ZQ, Wang YN, Zheng Y, Wang M. The diversity and functional feature of microflora in traditional vinegar brewing process. China Brewing, 2012, 31(7): 1-6. (in Chinese) 聂志强, 汪越男, 郑宇, 王敏. 传统食醋酿造过程中微生物群落的多样性及功能研究进展. 中国酿造, 2012, 31(7): 1-6. DOI:10.3969/j.issn.0254-5071.2012.07.001 |
[13] | 弓晓艳.老陈醋酿造过程中微生物群落结构与功能研究.山西大学硕士学位论文, 2010. http://d.wanfangdata.com.cn/thesis/Y2681442 |
[14] | Nie ZQ, Zheng Y, Du HF, Xie SK, Wang M. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. Food Microbiology, 2015, 47: 62-68. DOI:10.1016/j.fm.2014.11.006 |
[15] | Li S, Li P, Liu X, Luo LX, Lin WF. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar. Applied Microbiology and Biotechnology, 2016, 100(10): 4395-4411. DOI:10.1007/s00253-016-7284-3 |
[16] | Nie ZQ, Zheng Y, Xie SK, Zhang XL, Song J, Xia ML, Wang M. Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Scientific Reports, 2017, 7: 9240. DOI:10.1038/s41598-017-09850-6 |
[17] | Wang ZM, Lu ZM, Shi JS, Xu ZH. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Scientific Reports, 2016, 6: 26818. DOI:10.1038/srep26818 |
[18] | Wu LH, Lu ZM, Zhang XJ, Wang ZM, Yu YJ, Shi JS, Xu ZH. Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiology, 2017, 62: 23-31. DOI:10.1016/j.fm.2016.09.010 |
[19] | Zhang YJ, Skaar I, Sulyok M, Liu XZ, Rao MY, Taylor JW. The microbiome and metabolites in fermented Pu-erh tea as revealed by high-throughput sequencing and quantitative multiplex metabolite analysis. PLoS One, 2016, 11(6): e0157847. DOI:10.1371/journal.pone.0157847 |
[20] | Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, de Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4(10): 914-919. |
[21] | Department of Biology in Shanxi University, Shanxi Institute of Scientific and Technological Information, Taiyuan Brewery. Research report on new technology of raw vinegar brewing. China Condiment, 1989(1): 11-13. (in Chinese) 山西大学生物系, 山西省科技情报研究所, 太原市酿造厂. 生料制醋新工艺研究报告. 中国调味品, 1989(1): 11-13. |
[22] | Li DY. Technical conditions to be mastered in the process of raw vinegar brewing. China Condiment, 1995(10): 21-25. (in Chinese) 李大英. 生料酿造食醋工艺应掌握的技术条件. 中国调味品, 1995(10): 21-25. |
[23] | Zhu YP, Zhang FF, Zhang CN, Yang L, Fan GS, Xu YQ, Sun BG, Li XT. Dynamic microbial succession of Shanxi aged vinegar and its correlation with flavor metabolites during different stages of acetic acid fermentation. Scientific Reports, 2018, 8: 8612. DOI:10.1038/s41598-018-26787-6 |