李光玉1,2,3, 曾湘2,3, 邵宗泽2,3
1. 厦门大学生命科学学院, 福建 厦门 361102;
2. 自然资源部第三海洋研究所, 福建 厦门 361005;
3. 自然资源部海洋生物遗传资源重点实验室, 福建 厦门 361005
收稿日期:2018-09-04;修回日期:2019-01-10;网络出版日期:2019-02-19
基金项目:国家重点研发计划(2018YFC0310701);中国大洋专项生物资源计划(DY135-B2-01)
*通信作者:邵宗泽, Tel:+86-592-2195321, Fax:+86-592-2195236, E-mail:shaozz@163.com.
摘要:[目的] 从深海热液区获取异化铁还原微生物(Dissimilatory iron reducing microorganisms,DIRM),分析其矿化速率和矿化产物,认识其参与的深海生物地球化学循环。[方法] 以羟基氧化铁(FeOOH)为电子受体,以乙酸等简单有机物做电子供体,在60℃恒温厌氧条件下,对南大西洋中脊深海热液区硫化物样品中的DIRM进行富集、培养;采用扫描电镜(SEM)和透射电镜(TEM)、选区电子衍射(SAED)以及能谱仪(EDS)等方法对矿化产物进行形貌观察与成分分析。[结果] 从2个硫化物样品中,共获得了139个铁还原培养物,它们均能将培养基中FeOOH(Fe3+ 90 mmol/L)转化为矿化产物。电镜下可见明显的晶体形态,以立方体形晶体为主,边长为5.0-20.0 nm;EDS分析表明,所有矿物晶体的主要元素为铁和氧,推测是由菱铁矿和磁铁矿组成的混合矿物。矿物晶体形成的时间差异较大,从3 d到54 d不等,多数培养物可在11 d到20 d内形成晶体。微生物多样性表明,培养物中优势菌主要为厚壁菌门(Firmicutes)和广古菌门(Euryarchaeota),包括一氧化碳胞菌(Carboxydocella)与脱硫肠状菌(Desulfotomaculum)近似新物种(16S rRNA基因同源性89%-91%)和广古菌地丸菌(Geoglobus)。[结论] 热液区高温厌氧细菌与古菌可以利用简单有机物为电子供体进行铁还原,形成铁氧化物晶体。实验结果对于微生物参与铁元素的生物地球化学循环与矿物形成的潜力具有支持作用。然而它们是否参与了热液区铁元素的生物地球化学循环与矿物形成还需要大量研究工作验证。
关键词:南大西洋中脊热液区硫化物异化铁还原微生物矿化产物
Dissimilatory iron reducing microorganisms in South Mid-Atlantic Ridge hydrothermal fields and their mineralized products
Guangyu Li1,2,3, Xiang Zeng2,3, Zongze Shao2,3
1. School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, China;
2. Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian Province, China;
3. Key Laboratory of Marine Biogenetic Resources, State Oceanic Administration, Xiamen 361005, Fujian Province, China
*Corresponding author: Shao Zongze, Tel: +86-592-2195321; Fax: +86-592-2195236; E-mail:shaozz@163.com.
Foundation item: Supported by the National Key R & D Program of China (2018YFC0310701) and by the COMRA Program (DY135-B2-01)
Abstract: [Objective] To obtain the dissimilatory iron reducing microorganisms (DIRM) from deep sea hydrothermal fields, analyze their mineralization ability and mineralization products, to further understand their role in iron biogeochemical cycle. [Methods] We enriched and cultivated DIRM from polymetallic sulfides of South Mid-Atlantic Ridge hydrothermal fields with FeOOH as an electron acceptor, and acetic acid etc. as electron donor under the constant 60℃ temperature anaerobic condition. The morphology observation and elemental composition analysis on mineralized products were carried out by scanning electron microscope, transmission electron microscope, selected area electron diffraction and Energy Dispersive Spectrometer. [Results] We obtained a total of 139 iron reducing microbial cultures from 2 polymetallic sulfides. All of them could transform FeOOH (Fe3+ 90 mmol/L) into mineralized iron products with obvious crystal structure, mainly in cubic shape with side length ranged from 5.0 nm to 20.0 nm. According to Energy Dispersive Spectrometer analysis, the elements of all mineral crystals were iron and oxygen, presumably a mixed mineral composed crystal of siderite and magnetite. The time of formation of mineral crystals varies from 3 to 54 d, and most cultures can form crystals within 11 to 20 d. Microbial diversity indicated that the dominant microorganisms in the culture were mainly Firmicutes and Euryarchaeota, including Carboxydocella and Desulfotomaculum, a new species (16S rRNA Homology 89%-91%) and Geoglobus. [Conclusion] At 60℃, bacteria and archaea in hydrothermal fields could transform ferric iron to mixed iron oxides mineral with the simple organic compounds as electron donor. These results supported the potential of microorganisms to participate in the biogeochemical cycle and mineralization. However, it requires extensive research work to verify their roles in situ.
Keywords: South Mid-Atlantic Ridgehydrothermal fieldspolymetallic sulfidesdissimilatory iron reducing microorganismsmineralized products
深海热液区是一种典型的海底极端环境。海水沿着各种断层、裂隙或孔隙下渗后,被深部的岩浆房加热,与周围的岩石发生反应,将多金属元素溶解形成热液,其中OH-随Mg2+等一起参与蚀变矿物后,流体pH值降低,随着其温度升高,Cu、Pb、Zn、Fe成矿元素被大量溶解,含矿热液上升到海底表面后,受到低温海水冷却,其中的成矿元素则形成硫化物矿物沉淀下来,不断积累形成硫化物矿区。全球洋中脊已发现640多个热液区。我国近年来在南大西洋中脊(South Mid-Atlantic Ridge,SMAR)区域发现了多个新的热液区。其中,德音1号热液区[1],位于Cardno-Saint Helena洋脊裂谷中新生火山洋脊顶部的不连续洼陷内,区内存在大量活动的硫化物烟囱体,主要矿物为黄铁矿-白铁矿-闪锌矿,其成矿流体中金属元素主要以Fe、Zn为主[2]。
热液区铁还原菌的研究,对于阐明深海硫化物中铁元素循环以及生物成矿过程具有重要意义,但是目前研究较少[3]。目前,已发现的异化铁还原微生物(Dissimilatory iron reducing microorganisms,DIRM)大多来源于淡水沉积物、矿坑酸性水、海洋沉积物、堆肥、盐碱湖、热泉、微生物燃料电池等生境。从分类学角度,它们多属于细菌[4],包括变形菌门(Proteobacteria)和厚壁菌门(Firmicutes),也有少数属于脱铁杆菌门(Deferribacteres)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria);少数属于古菌域成员,如泉古菌门的火棒菌(Pyrobaculum)[5]和广古菌门的地丸菌(Geoglobus)[6]。其中,来自淡水河流沉积物的厚壁菌门成员金属地杆菌(Geobacillus metallireducens GS-15)与来自淡水湖泊水样的变形菌门成员奥奈达希瓦氏菌(Shewanella oneidensis MR-1)是目前作为铁还原机制研究的模式材料[7-8]。
DIRM能够广泛利用多种有机物质作为电子供体,进行胞外Fe(Ⅲ)还原。铁的异化还原作用驱动着淡水和海洋环境中土壤、沉积物的Fe、Mn等元素循环以及有机物矿化[9-10],被认为是地球化学最重要的过程之一[11]。
热液区微生物参与的铁氧化还原过程还不清楚。为认识深海热液区DIRM多样性及其参与的成矿过程,本文以FeOOH作为电子受体,通过富集培养SMAR热液区的异化铁还原菌。通过长时间富集,获得了大量高温厌氧铁还原培养物,初步分析了富集菌群中的微生物多样性与铁还原矿化产物,为深入研究热液区DIRM代谢机制与环境作用打下了基础。
1 材料和方法 1.1 多金属硫化物样品采集 2011年4月,“大洋一号”调查船于南大西洋中脊德音1号热液区[1]开展热液区综合调查期间(中国大洋航次第DY22航次第Ⅳ航段),通过电视抓斗取得了活动的热液烟囱壁样品(图 1,表 1)。采样装置是相对开放的,在回收过程中存在水体交换。现场采样后分装于无菌厌氧管中,密封保存于4 ℃冰箱。
图 1 德音1号热液区位置图[1] Figure 1 Location diagram of the Deyin-1 hydrothermal field [1]. |
图选项 |
表 1. SMAR德音热液区硫化物样品信息 Table 1. Sample information of polymetallic sulfides from SMAR
Station name | Longitude/W | Latitude/S | Depth/m |
DY22Ⅳ-S003-TVG03 | 13.3564° | 15.1656° | 2875 |
DY22Ⅳ-S008-TVG06 | 13.3556° | 15.1661° | 2737 |
表选项
1.2 培养基的配方及配制方法 采用了Fe-Ac培养基[6]和Fe-Gly培养基,其电子供体分别为乙酸和甘油,电子受体均为FeOOH。所采用的FeOOH为FeCl3经NaOH滴定至pH 9.0获得,滴定形成的胶体被超纯水洗涤后,配成450 mmol/L (以FeCl3计)水悬液置于常温备用。Fe-Gly培养基是在Fe-Ac培养基的基础上改造,将其中的乙酸替换为甘油(3.00 mL/L)。
1.3 分离培养与保藏 在厌氧培养箱中,取1-2 g样品分别加于50 mL Fe-Ac及Fe-Gly液体培养基中,用硅胶塞重新密封加盖铝帽,于高温培养箱中60 ℃静置培养。电视抓斗是相对开放性取样设备,在回收过程中存在水体交换,然而回收过程中经过的水体生境绝大部分是低温至常温的环境,难以在高温环境存活。
培养基中FeOOH转变为深黑色时,表明其已被还原为其他物质,此时立即对培养物进行转接。接种过程在超净台使用一次性医用注射器完成。使用前注意将注射器头部少量的空气挤出,以尽可能减少空气进入。接种过程仅有极少量的空气进入,其中的少量氧气迅速被培养基中的半胱氨酸还原,因此不影响厌氧菌的生长。培养物接种量一般为培养基体积的2%-5%,对于放置较久的培养物提高到10%。第1次转接Fe-Ac培养物25 d,Fe-Gly培养物22 d;第2次转接时间Fe-Ac培养物44 d,Fe-Gly培养物20 d。从第3次转接开始,培养基中按正常剂量添加L-半胱氨酸(L-Cys)以保持严格厌氧,添加蒽醌-2, 6-二磺酸钠(anthraquinone-2, 6-disulfonic disodium salt,AQDS)作为电子穿梭体。
1.4 培养物中细菌、古菌多样性的初步鉴定 采用PowerSoil?试剂盒(美国MO BIO公司,Cat# 12888-50)提取铁还原培养物的DNA。分别用细菌16S rRNA特异性引物[27F (5′-AGAGTTTGATCCTGGCTCAG-3′)、1492R (5′-ACGGCTAC CTTGTTACGACT-3′)]和古菌16S rRNA特异性引物[Arch21F (5′-TTCCGGTTGATCCYGCCGGA-3′)、Arch958R (5′-YCCGGCGTTGAMTCCAATT-3′)]两对引物扩增16S rRNA基因(Y为C或T,M为A或C)。PCR产物送上海美吉生物医药科技有限公司进行基因测序,结果在EzBioCloud数据库[12]序列比对。
1.5 培养物中Fe2+的含量分析 采用菲洛嗪(Ferrozine)法[13]测定受试样品中的二价铁含量。该方法以Ferrozine-HEPES溶液(配方为Ferrozine 1 g/L,HEPES 50 mmol/L,pH 7.0。以下简称“菲洛嗪溶液”)为显色剂,以六水合硫酸亚铁铵([NH4]2Fe[SO4]2?6H2O)的稀盐酸(0.5 mol/L,以下简称“盐酸溶液”)溶液为标准溶液。测定时,取0.1 mL受试溶液,加入到5.0 mL盐酸溶液中,振荡混匀后静置20 min,取上清液0.1 mL加入到5.0 mL菲洛嗪溶液中,振荡15 s,静置30 min,显色完全后测定其OD562。根据标准溶液制作的标准曲线,测算受试溶液中Fe2+浓度。
取铁还原培养物4000 r/min (1717×g)离心10 min,分别收集上清液和沉淀并测定体积或称重。上清液直接作为受试溶液。沉淀进行冷冻干燥测干重,随后溶解到相应培养基等体积稀盐酸溶液中,作为受试溶液。沉淀如无法马上处理,用纯氮置换管中气相后于4 ℃备用。
1.6 矿化产物分析
1.6.1 SEM和EDS分析: 取铁还原培养物4000 r/min (1717×g)离心10 min,收集沉淀存4 ℃备用。制备电镜样品时取少量沉淀分散到无菌水滴中形成悬液,再取5 μL样品悬液,分散到200 μL乙醇溶液(75%,V/V),转移到0.22 μm硝酸纤维素滤膜上,过夜干燥。采用在离子溅射仪(日本电子JFC-1600型)喷镀铂金属薄膜(50-300 ?)。采用ZEISS公司SIGMA 500型SEM观察。
1.6.2 TEM和SAED分析: 采用4000 r/min (1717×g)离心10 min,取沉淀用等体积超纯水洗涤1次,存4 ℃备用。制备电镜样品时取少量沉淀分散到无菌水滴中形成悬液,再取5 μL样品悬液,分散到200 μL乙醇溶液(75%,V/V),超声2次使之均质化,吸取20 μL左右稀释的样品悬液,在封口膜/保鲜膜上形成一个水滴。取铜网使其正面朝向悬液液滴,吸附片刻(约10 s)后取出备用。采用美国FEI公司TECNAI G2 F20 TEM,先观察透射像(明场、暗场和高分辨率)了解样品外貌,再电子衍射分析样品晶体结构,最后使用EDS (能量分辨率:~130 eV)分析样品的元素组成。
2 结果和分析 2.1 分离培养与观察 Fe-Ac培养物与Fe-Gly培养物采用了乙酸和甘油作为不同的电子供体,经过60 ℃厌氧富集培养,共获得了139个高温异化铁还原培养物。通过肉眼观察培养液颜色变化,判断铁还原程度,记录FeOOH棕色消退、培养液变黑所需的最短时间。
统计发现,这些培养物将培养基中FeOOH完全还原(变成深黑色)所需的最短时间从3 d到54 d不等,主要集中在11-20 d [占44%,(61/139),表 2]。
表 2. 不同培养物形成矿化产物所需的最短时间 Table 2. Minimum time required for different cultures to form mineralized products
Minimum time/d | 1 | 2 | 3 | 4 | 5 | 6 |
≤10 | 11 | 4 | 7 | 10 | 0 | 10 |
11-20 | 41 | 22 | 19 | 20 | 1 | 19 |
21-30 | 6 | 4 | 2 | 9 | 8 | 1 |
31-40 | 15 | 10 | 5 | 1 | 1 | 0 |
41-50 | 19 | 14 | 5 | 0 | 0 | 0 |
51-54 | 0 | 0 | 0 | 7 | 7 | 0 |
≥55 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 92 | 54 | 38 | 47 | 17 | 30 |
1: Sum of total cultures from DY22Ⅳ-S003-TVG03; 2: Sum of Fe-Ac cultures from DY22Ⅳ-S003-TVG03; 3: Sum of Fe-Gly cultures from DY22Ⅳ-S003-TVG03; 4: Sum of total cultures from DY22Ⅳ-S008-TVG06; 5: Sum of Fe-Ac cultures from DY22Ⅳ-S008-TVG06; 6: Sum of Fe-Gly cultures from DY22Ⅳ-S008-TVG06. |
表选项
有的铁还原培养物难以继代培养,转接不稳定。同一批次转接的培养物,完成铁还原所需的时间差异较大。目前能够超过10次转接仍能存活的培养物共有13个(表 3)。多数培养物在转接若干次后则不能继续传代,这可能由于培养条件与原位的差异造成的。
表 3. 转接次数超过10次的铁还原培养物 Table 3. Iron-reducing cultures with more than 10 of transfer times
Culture No. | Mineral formation time/d | Strain age before cryopreserved/d | Times of transfer |
224T3A12-1 | 11 | 11 | 11 |
224T3A13-3 | 14 | 36 | 10 |
224T3A14-1 | 16 | 21 | 10 |
224T3A14-2 | 17 | 58 | 10 |
224T3A14-3 | 10 | 14 | 11 |
224T3A2-1 | 20 | 21 | 11 |
224T3A4-2 | 9 | 34 | 10 |
224T3A5 | 4 | 4 | 14 |
224T3GL2 | 4 | 4 | 12 |
224T3GL4-2 | 7 | 7, 56 | 12 |
224T6GL2-2B | 5 | 5, 6, 7, 8, 28, 51 | 14 |
224T6GL2-2BP | 5 | 5, 9 | 14 |
224T6GL4-2 | 5 | 25 | 10 |
表选项
2.2 DIRM培养物的微生物组成分析 对能够长期培养的铁还原培养物中的微生物多样性开展了初步鉴定。由于富集物DNA提取困难,仅完成4个富集物的16S rRNA基因测序分析的培养物。扩增获得细菌PCR产物长1500 bp,古菌PCR产物长939 bp。经与EzBioCloud数据库[12]序列比对,发现224T3A5中包含细菌和古菌两种微生物,细菌与梭菌纲XVI类群的Carboxydocella manganica SLM 61T (NCBI No. GU584133)相似性为89.95%,古菌与Geoglobus acetivorans SBH6T (NCBI No. CP009552)相似性为99.57%;224T3GL2与模式菌株Carboxydocella manganica SLM 61T (NCBI No. GU584133)相似性为90.74%;224T3GL4-2与模式菌株梭菌纲消化球菌科的Desulfotomaculum thermocisternum ST90T (NCBI No. U33455)相似性为89.01%;224T6GL2-2与模式菌株Anoxybacter fermentans DY22613T (NCBI No. KC794015)相似性为99.52% (表 4)。以上培养物中,224T3GL2的多项分类鉴定工作正在开展。
表 4. 基于16S rRNA基因相似度的铁还原培养物微生物多样性分析 Table 4. Microbial diversity analysis of iron reduction cultures based on 16S rRNA gene similarity
Culture No. | Sequence No. | Most related type strains | NCBI No. | Similarity/% |
224T3A5 | 224T3A5 | Carboxydocella manganica SLM 61T | GU584133 | 89.95 |
224T3A5 | 224T3A5(A) | Geoglobus acetivorans SBH6T | CP009552 | 99.57 |
224T3GL2 | 224T3GL2 | Carboxydocella manganica SLM 61T | GU584133 | 90.74 |
224T3GL4-2 | 224T3GL4-2 | Desulfotomaculum thermocisternum ST90T | U33455 | 89.01 |
224T6GL2-2 | 224T6GL2-2B | Anoxybacter fermentans DY22613T | KC794015 | 99.52 |
表选项
2.3 DIRM培养物Fe2+含量分析 对其中FeOOH全部被转变为深黑色的培养物开展Fe2+含量分析,结果表明各培养物矿化产物(沉淀)和上清中Fe2+含量较对照均有上升,在沉淀中Fe2+含量增高更明显。Fe2+主要分布于矿化产物中,各培养物上清中Fe2+总量仅为矿化产物中的2%-14%。Fe2+含量最高的矿化产物为224T6GL7-3 (1620 mmol/kg),最低的为224T6AL (618 mmol/kg)。Fe-Gly矿化产物Fe2+含量普遍较Fe-Ac更高(表 5)。
表 5. 各DIRM培养物中Fe2+含量分析 Table 5. Fe2+ content analysis in DIRM cultures
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Fe-Ac Control (Blank medium) | 198.56 | 0 | 0.17 | 0 | 23.83 | 1.58 | 0.07 |
Fe-Gly Control (Blank medium) | 386.05 | 0 | 0.20 | 0 | 46.33 | 1.73 | 0.04 |
224T3A5 | 1043.28 | 2.94 | 0.17 | 0 | 93.90 | 1.62 | 0.02 |
224T6A6 | 964.62 | 3.45 | 0.20 | 0.19 | 106.11 | 2.17 | 0.02 |
224T6AL | 618.30 | 1.34 | 0.74 | 3.51 | 55.65 | 7.96 | 0.14 |
224T3GL2 | 1468.25 | 4.62 | 1.74 | 7.82 | 132.14 | 18.79 | 0.14 |
224T3GL4-2 | 932.52 | 2.97 | 0.26 | 0.33 | 93.25 | 2.83 | 0.03 |
224T6GL7-3 | 1620.03 | 5.20 | 1.61 | 7.17 | 145.80 | 17.71 | 0.12 |
1: Fe2+ content in precipitate (mmol/kg); 2: Increasing multiple of Fe2+ content in precipitation; 3: Fe2+ content in supernatant (mmol/L); 4: Increasing multiple of Fe2+ content in supernatant; 5: Total Fe2+ in precipitate (μmol); 6: Total Fe2+ in supernatant (μmol); 7: Ratio of total Fe2+ in supernatant and precipitation. |
表选项
2.4 DIRM培养物矿化产物的分析 8个受试样品中,2个分别是Fe-Ac空白培养基和Fe-Gly空白培养基,3个Fe-Ac系列矿化产物分别来自富集物224T3A5、224T6A6和224T6AL,3个Fe-Gly系列矿化产物分别来自富集物224T3GL2、224T3GL4-2和224T6GL7-3。在SEM下,受试各矿化产物主要形态为球形或块状突起。在TEM下,各样品均可见规则形态,与不接种的空白培养基对照存在明显差异。由于FeOOH本身即有微弱的结晶态存在,因此空白对照也呈现一定的晶体特征。经微生物作用后,存在梭形晶体的FeOOH逐渐转化为以立方体形为主的矿化产物(图 2,图 3)。
图 2 Fe-Ac系列矿化产物的透射电镜、选区电子衍射和能谱仪分析 Figure 2 TEM, SAED and EDS analysis of Fe-Ac series mineralized products. A1: TEM CK of Fe-Ac samples, blank medium; A2: SAED CK of Fe-Ac samples, blank medium; A3: EDS CK of Fe-Ac samples, blank medium; B1: TEM of 224T3A5; B2: SAED of 224T3A5; B3: EDS of 224T3A5; C1: TEM of 224T6A6; C2: SAED of 224T6A6; C3: EDS of 224T6A6; D1: TEM of 224T6AL; D2: SAED of 224T6AL; D3: EDS of 224T6AL. |
图选项 |
图 3 Fe-Gly系列矿化产物的透射电镜、选区电子衍射和能谱仪分析 Figure 3 TEM, SAED and EDS analysis of Fe-Gly series mineralized products. A1: TEM CK of Fe-Gly samples, blank medium; A2: SAED CK of Fe-Gly samples, blank medium; A3: EDS CK of Fe-Gly samples, blank medium; B1: TEM of 224T3GL2; B2: SAED of 224T3GL2; B3: EDS of 224T3GL2; C1: TEM of 224T3GL4-2; C2: SAED of 224T3GL4-2; C3: EDS of 224T3GL4-2; D1: TEM of 224T6GL7-3; D2: SAED of 224T6GL7-3; D3: EDS of 224T6GL7-3. |
图选项 |
受试的3个Fe-Ac样品中,224T3A5矿化产物形成最快(4 d),其矿化产物可见梭形与立方体两种形态的晶体混合在一起,以梭形形态的数量较多,结晶度较高。224T6A6矿化产物的晶体形态最好,几乎全部是立方体形的晶体,颗粒尺寸最大(边长范围17.5-20.0 nm)且结晶度高(可见大量清晰的衍射斑点),其铁氧比较对照明显升高(Fe/O为1.39)(图 2,C1-C2)。224T6AL结晶度高,然而晶体棱角并不明显,不同晶体表面晶格条纹方向也有所不同(图 2,D1-D2)。各矿化产物简要情况见表 6。
表 6. 各Fe-Ac培养基富集物的矿化产物晶体参数统计 Table 6. Crystal parameters of mineralized products from cultures of Fe-Ac
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Control | / | + | 0.54 | Fusiform | Diameter 3.0-4.0, | 0.31 | Parallel to the long axis |
Length 10.0-18.0 | |||||||
224T3A5 | 4 | +++ | 0.53 | Fusiform | Diameter 3.5-4.0, | Dim | Always parallel to the long axis |
Length 12.5-26.0 | |||||||
Cubical, a few | Side Length 8.75 | 0.25 | At an angle of 45° to the side | ||||
224T6A6 | 14 | ++++ | 1.39 | Cubical | Side Length 17.5-20.0 | 0.25-0.29 | Parallel to or at an angle of 45° to the side |
Rod, occasionally | Diameter 2.5-5.0, | Not observed | Not observed | ||||
Length 37.5-100.0 | |||||||
224T6AL | 39 | ++++ | 0.59 | Cubical analogy | Side Length 5.0-7.0 | 0.25-0.36 | Parallel to or at an angle of 45° or about 80° |
Rod, a few | Diameter 2.5-5.3 | Not observed | Not observed | ||||
Length 20.0-225.0 | |||||||
1: Time required for mineral formation (d); 2: Crystallinity; 3: Fe/O ratio; 4: Shapes of crystal particles; 5: Diameter/Length/Side Length of crystal particles (nm); 6: Interplanar spacing (nm); 7: Direction of lattice fringes. |
表选项
受试的3个Fe-Gly系列样品中,224T3GL2矿化产物的形成最快(4 d),可见立方体形态的晶体,少见杆状结构,结晶度较高。224T3GL4-2矿物晶体形态最好,其晶体结构鲜明,几乎全部是立方体形的晶体,较其他两个样品结晶度更高(图 3,C1-C2)。224T6GL7-3也是立方体形晶体,偶见杆状结构,其晶体尺寸比其他样品更均匀(立方体边长12.8-15.0 nm)(图 3,D1-D2)。各矿化产物简要描述见表 7。
表 7. 各Fe-Gly培养基富集物的矿化产物晶体参数统计 Table 7. Crystal parameters of mineralized products from cultures of Fe-Gly
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Control | / | + | 0.56 | Fusiform | Diameter 3.5-5.1, | 0.75 | Parallel to the long axis |
Length 12.0-35.0 | |||||||
224T3GL2 | 4 | +++ | 0.57 | Cubical | Side length 7.5-45.0 | 0.21-0.50 | Parallel to or at an angle of 45° to the side |
Rod, a few | Diameter 3.0-6.0, | Not observed | Not observed | ||||
Length 17.0-45.0 | |||||||
224T3GL4-2 | 7 | +++ | 0.57 | Cubical | Side length 6.0-23.0 | 0.25-0.50 | Parallel to or at an angle of 45° to the side |
Spherical, a few | Diameter 10.0-23.8 | 0.26-0.31 | / | ||||
Rod, occasionally | Diameter 5.0, | Not observed | Not observed | ||||
Length 50.0 | |||||||
224T6GL7-3 | 5 | +++ | 0.63 | Cubical | Side length 12.8-15.0 | 0.25-0.50 | Parallel to or at an angle of 80° to the side |
Rod, occasionally | Diameter 4.0, | Not observed | Not observed | ||||
Length 20.0 | |||||||
1: Time required for mineral formation (d); 2: Crystallinity; 3: Fe/O ratio; 4: Shapes of crystal particles; 5: Diameter/Length/Side Length of crystal particles (nm); 6: Interplanar spacing (nm); 7: Direction of lattice fringes. |
表选项
对Fe-Ac系列和Fe-Gly系列的矿化产物的TEM分析结果表明,当采用乙酸作为电子供体时,矿化产物主要呈现立方体形晶体(边长为5.0-20.0 nm),少数呈现梭形(直径3.5-4.0 nm,长12.5-26.0 nm) (图 2);当甘油作为电子供体时,矿化产物几乎全部是立方体形晶体(边长为6.0-45.0 nm),仅有一个样品呈现梭形为主的形态(3.3-4.7 nm,长14.7-33.0 nm) (图 3)。可见,矿化产物在颗粒形状、晶面间距和电子衍射图案等特征方面,与对照显著不同。这表明FeOOH经过微生物作用后确实生成了新的矿物。EDS分析表明各样品的主要元素均为铁和氧,矿化产物224T6A6的铁氧比相对于对照明显增高,其余则与差别不大(图 2,A3、B3、C3、D3;图 3,A3、B3、C3、D3)。结合矿化产物能够被磁铁吸引的特点,初步判断其成分为磁铁矿(Fe3O4)与菱铁矿(FeCO3)的混合晶体。
3 讨论 异化铁还原作用被普遍认为是一种微生物呼吸作用的早期形式[11],已从盐碱湖[14]、热泉[15]、矿坑湖[16],甚至堆肥[17]等各种环境中分离到了DIRM。本实验室前期从东太平洋热液区发现了梭菌目的DIRM新物种[3],例如嗜热异化铁还原菌Caloranaerobacter ferrireducens,它能以多种有机物为电子供体将铁氧化合物还原成磁铁矿[18]。为进一步认识该类微生物在大洋深海环境中的分布与环境作用,本研究从南大西洋热液区开展了铁还原菌的富集。从德音热液区获得了139个DIRM培养物。发现多数培养物能够在10-20 d观察到明显的铁还原现象,微生物多样性初步分析发现菌群微生物组织单一、菌种新颖。
微生物在矿物形成过程中起着重要作用,已发现生物成因的矿物有60余种[19-20],包括黄铁矿和草莓状闪锌矿等大洋硫化物中的典型矿物,也包括针铁矿、沉积赤铁矿、菱铁矿以及施氏矿物等[21-22]。同一个微生物在不同条件下可以将同一物质转化为不同的矿物,也可参与不同矿物之间的相互转化。如希瓦氏菌能够在一定条件下先形成磁铁矿,进而将其转化为蓝铁矿[23]。此外,考虑到深海热液区来源DIRM铁还原速率(2-3 μmol/h)远远高于其淡水沉积物成员(0.17 μmol/h)[18, 24-26],它们在热液环境下对矿物形成的作用不容忽视。本研究中DIRM将FeOOH矿化为纳米级晶体颗粒。这些颗粒在热液区中可能成为矿物形成所需的母核,与地质作用共同促进矿物形成。磁铁矿的生物矿化则对环境铁循环、沉积物磁化,进而对地质记录以及对微生物化石作为生物标记的应用等方面都有重要影响[27]。
同种Fe-Ac培养物形成的矿化产物晶体大小比较均一,而同种Fe-Gly则均一性很差(6.0-23.0 nm),两类矿化产物的晶面间距差别不大,均为0.25 nm左右。推测Fe-Ac和Fe-Gly矿化产物在晶体形成的过程中可能具有不同机制。需要注意的是224T6A6,它具有2倍于同类产物的边长,其形成过程可能另具特点。
本研究只选择了乙酸和甘油作为电子供体,而实际上DIRM的电子供体有很多,既包括葡萄糖、甘油、丙酸盐、乙酸盐,乃至氢气[28]等小分子有机物,也包括蛋白胨等复杂有机物。鉴于实验室条件下电子供体和静水压等方面与其原位环境差异较大,要深入了解其参与的生物地球化学循环,尚需进一步研究。
通过长期富集培养,本研究从南大西洋中脊德音热液区获得了大量DIRM培养物,它们能将FeOOH还原成以菱铁矿与磁铁矿混合的矿化产物。初步分析发现,厚壁菌门(Firmicutes)梭菌纲XVI类群和消化球菌科两个细菌新种和广古菌(Euryarchaeota)的广古菌地丸菌(Geoglobus)参与了铁还原。初步证明了热液区高温厌氧细菌与古菌可以利用简单有机物为电子供体进行铁还原,形成铁氧化物晶体。实验结果对于微生物具有参与铁元素的生物地球化学循环与矿物形成的潜力具有支持作用。然而它们是否参与了热液区铁元素的生物地球化学循环与矿物形成还需要大量研究工作验证。
致谢
感谢厦门大学化学化工学院吴元菲和张淑红两位老师提供实验平台完成扫描电镜、透射电镜和能谱仪实验分析。
References
[1] | Chinese Ocean Mineral Resources Research and Development Association Office. Chinese gazetteer of undersea features on the international seabed 2016. Beijing: China Ocean Press, 2016: 388-389. (in Chinese) 中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录(2016). 北京: 海洋出版社, 2016: 388-389. |
[2] | Ye J, Shi XF, Yang YM, Ren XW, Li B. The preliminary division of mineralization stage of hydrothermal sulfide in mid-Atlantic ridge 15°S. Acta Mineralogica Sinica, 2013, 32(S2): 680. (in Chinese) 叶俊, 石学法, 杨耀民, 任向文, 李兵. 大西洋中脊15°S热液硫化物成矿阶段初步划分. 矿物学报, 2013, 32(S2): 680. |
[3] | Zeng X, Zhang Z, Li X, Jebbar M, Alain K, Shao ZZ. Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron(Ⅲ)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits.. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 1714-1718. DOI:10.1099/ijs.0.000165 |
[4] | Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR. Phylogenetic analysis of dissimilatory Fe(Ⅲ)-reducing bacteria. Journal of Bacteriology, 1996, 178(8): 2402-2408. DOI:10.1128/jb.178.8.2402-2408.1996 |
[5] | Kashefi K, Lovley DR. Reduction of Fe(Ⅲ), Mn(Ⅳ), and toxic metals at 100 ℃ by Pyrobaculum islandicum. Applied and Environmental Microbiology, 2000, 66(3): 1050-1056. DOI:10.1128/AEM.66.3.1050-1056.2000 |
[6] | Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI. Geoglobus acetivorans sp. nov, an iron(Ⅲ)-reducing archaeon from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(11): 2880-2883. DOI:10.1099/ijs.0.011080-0 |
[7] | Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Bacteriology, 1992, 174(11): 3429-3438. DOI:10.1128/jb.174.11.3429-3438.1992 |
[8] | Shi L, Dong HL, Reguera G, Beyenal H, Lu AH, Liu J, Yu HQ, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14(10): 651-662. DOI:10.1038/nrmicro.2016.93 |
[9] | Nealson KH, Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Review of Microbiology, 1994, 48: 311-343. DOI:10.1146/annurev.mi.48.100194.001523 |
[10] | Nealson KH, Belz A, McKee B. Breathing metals as a way of life: geobiology in action. Antonie van Leeuwenhoek, 2002, 81(1/4): 215-222. DOI:10.1023/A:1020518818647 |
[11] | Lovley DR. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction. Microbiological Reviews, 1991, 55(2): 259-287. |
[12] | Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617. DOI:10.1099/ijsem.0.001755 |
[13] | Stookey LL. Ferrozine-a new spectrophotometric reagent for iron. Analytical Chemistry, 1970, 42(7): 779-781. DOI:10.1021/ac60289a016 |
[14] | Zhilina TN, Zavarzina DG, Detkova EN, Patutina EO, Kuznetsov BB. Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautotrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2432-2440. DOI:10.1099/ijs.0.000278 |
[15] | Slobodkina GB, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI. Pyrobaculum ferrireducens sp. nov., a hyperthermophilic Fe(Ⅲ)-, selenate- and arsenate-reducing crenarchaeon isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(3): 851-856. |
[16] | Falagán C, Foesel B, Johnson B. . nov., Acidicapsa acidiphila sp. nov., and Granulicella acidiphila sp. nov.: novel Acidobacteria isolated from metal-rich acidic waters. Extremophiles, 2017, 21(3): 459-469. DOI:10.1007/s00792-017-0916-4 |
[17] | Yang GQ, Guo JH, Zhuang L, Yuan Y, Zhou SG. Desulfotomaculum ferrireducens sp. nov., a moderately thermophilic sulfate-reducing and dissimilatory Fe(Ⅲ)-reducing bacterium isolated from compost. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(8): 3022-3028. DOI:10.1099/ijsem.0.001139 |
[18] | Li X, Zeng X, Zhang Z, Shao ZZ. Characteristics of different iron oxides reduction by a thermophilic dissimilatory iron reducing bacterium Caloranaerobacter ferrireducens DY22619T from deep sea. Acta Oceanologica Sinica, 2016, 38(8): 83-92. (in Chinese) 李曦, 曾湘, 张昭, 邵宗泽. 深海嗜热异化铁还原菌Caloranaerobacter ferrireducens DY22619T对不同铁氧化物的铁还原特性. 海洋学报, 2016, 38(8): 83-92. DOI:10.3969/j.issn.0253-4193.2016.08.009 |
[19] | B?uerlein E. Biomineralization: From biology to biotechnology and medical application. Germany: Wiley-VCH, Weinheim, 2000. |
[20] | Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 1-29. DOI:10.2113/0540001 |
[21] | Chen ZM. Organic action in the forming process of sedimentary iron ore. Advances in Earth Science, 1992, 7(6): 56-59. (in Chinese) 陈志明. 沉积铁矿形成过程中的生物作用. 地球科学进展, 1992, 7(6): 56-59. |
[22] | Zhou SG, Zhou LX, Chen FX. Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions. Spectroscopy and Spectral Analysis, 2007, 27(2): 367-370. (in Chinese) 周顺桂, 周立祥, 陈福星. 施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能. 光谱学与光谱分析, 2007, 27(2): 367-370. |
[23] | Wang FX, Zheng SL, Qiu H, Cao CQ, Tang X, Hao LK, Liu FH, Li JH. Ferrihydrite reduction and vivianite biomineralization mediated by iron reducing bacterium Shewanella oneidensis MR-4. Acta Microbiologica Sinica, 2018, 58(4): 573-583. (in Chinese) 王芙仙, 郑世玲, 邱浩, 曹长乾, 唐旭, 郝立凯, 刘芳华, 李金华. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程. 微生物学报, 2018, 58(4): 573-583. |
[24] | Roh Y, Gao HC, Vali H, Kennedy DW, Yang ZK, Gao WM, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ, Fredrickson JK, Zhou JZ. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4. Applied and Environmental Microbiology, 2006, 72(5): 3236-3244. DOI:10.1128/AEM.72.5.3236-3244.2006 |
[25] | Roh Y, Moon HS. Iron reduction by a psychrotolerant Fe(Ⅲ)-reducing bacterium isolated from ocean sediment. Geosciences Journal, 2001, 5(3): 183-190. DOI:10.1007/BF02910302 |
[26] | Salas EC, Berelson WM, Hammond DE, Kampf AR, Nealson KH. The Impact of Bacterial Strain on the Products of Dissimilatory Iron Reduction. Geochimica et Cosmochimica Acta, 2010, 74(2): 574-583. DOI:10.1016/j.gca.2009.10.039 |
[27] | Bazylinski DA, Frankel RB, Konhauser KO. Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 2007, 24(6): 465-475. DOI:10.1080/01490450701572259 |
[28] | Lovley DR, Phillips EJP, Lonergan DJ. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology, 1989, 55(3): 700-706. |