曾文波1,2,3, 常衬心2, 李建平1, 王元兵2, 代永东2, 虞泓2
1.文山学院环境与资源学院, 云南 文山 663099;
2.云南大学中草药生物资源研究所云百草实验室, 云南 昆明 650091;
3.文山州生物资源开发研究中心, 云南 文山 663099
收稿日期:2016-04-29;修回日期:2016-11-11;网络出版日期:2016-12-06
基金项目:云南省教育厅科学研究基金(2016ZZX227)
*通信作者:虞泓, E-mail:herbfish@163.com
摘要: [目的]揭示蝉棒束孢居群形态性状的变异式样。[方法]通过对15个居群,75个蝉棒束孢菌株17个显微形态性状的观察和测量,采用SAS 8.1软件对蝉棒束孢显微形态性状数据进行描述性、巢式方差和Q聚类分析,获得蝉棒束孢显微形态变异数据。[结果]蝉棒束孢具有大小两型分生孢子,产孢细胞的形态可分为葫芦状和瓶状2种类型;蝉棒束孢在PDA培养基中易形成数量众多的厚垣孢子,菌丝间多能形成融合菌丝,并可观察到少量的融合菌丝在厚垣孢子与菌丝间、产孢细胞间形成。描述性分析表明,蝉棒束孢居群17个形态性状的变异系数(CV)在13.07%-104.09%之间,在物种水平上表现出丰富的变异;巢式方差分析表明,蝉棒束孢显微形态性状在居群间平均方差分量占总变异的11.29%,居群内个体间平均方差分量占总变异的15.27%,菌株内观察值间平均方差分量占总变异的73.44%。[结论]蝉棒束孢菌株形态性状变异丰富,是形态性状变异的主要来源,蝉棒束孢居群显微形态性状不存在明显的地理相关性。
关键词: 蝉花 居群 菌丝体 形态变异
Micro-morphological variation pattern of Isaria cicadae
Wenbo Zeng1,2,3, Chenxin Chang2, Jianping Li1, Yuanbing Wang2, Yongdong Dai2, Hong Yu2
1.College of Environment and Resources, Wenshan University, Wenshan 663099, Yunnan Province, China;
2.Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, Yunnan Province, China;
3.Wenshan Biological Resources Development and Research Center, Wenshan 663099, Yunnan Province, China
Received 29 April 2016; Revised 11 November 2016; Published online 06 December 2016
*Corresponding author: Hong Yu, E-mail:herbfish@163.com
Supported by the Science Research Fund Project of Yunnan Education Department (2016ZZX227)
Abstract: [Objective]To reveal the morphological pattern of Isaria cicadae.[Methods]We observed 17 morphological characters and measured 75 strains of 15 populations in I. cicadae. Statistical analysis system (SAS) 8.1 was used to analyze the morphological data, the morphological pattern was analyzed in 15 populations of I. cicadae, using the descriptive statistical analysis, nested analysis and Q cluster analysis.[Results]Two types of asexual conidium (large and small conidium) were observed in I. cicadae. The gourd-shaped and bottle-shaped conidiogenous cells were observed in I. cicadae. Many chlamydospores of I. cicadae were easy to form in PDA medium. Many fusion hyphae were generated between hyphae, and some fusion hyphae between hypha and chlamydospore, the fusion hyphae between conidiogenous cells were also observed. The CV of 17 morphological characters was from 13.07 to 104.09% in I. cicadae, indicating an ample morphological diversity at the species level. The nested variation analysis of the 17 morphological characters indicated that about 11.29% of the variability was attributable to the differentiation among populations, the rest 15.27% of the variability was derived from individual strains, and the remaining 73.44% was resided in the observations in the same strain.[Conclusion]The phenotypic variation within strain was the main morphological variation of I. cicadae. The morphological characters had no significant relationship with geographical origin in I. cicadae.
Key words: Isaria cicadae population mycelium morphological variation
“蝉花”是我国名贵传统中药材,最早关于“蝉花”的记载是成书于公元五世纪的《雷公炮炙论》[1],其曰“蝉花,凡使要白花全者,收得后于屋下东南角悬干,去甲土后,用浆水煮一日至夜,焙干碾细用之”。“蝉花”一词为俗称,不是分类学上的名词,包括多种虫草类真菌[2],“蝉花”一词在大多数情况下指的是真菌蝉棒束孢Isaria cicadae Miquel感染蝉若虫后形成的虫菌复合体,孢梗束从寄主蝉科昆虫若虫头部密集长出,圆柱状或扁圆柱状,长1.5-15 cm,直径6-15 mm,柄部淡黄色,顶端棒状或头状反复分支形成鸡冠花状的头,其上形成分生孢子团,淡黄白色至枯黄色,呈粉状。由于孢梗束整体呈花冠状,故名“蝉花”,见图 1。根据现代分类学研究,“蝉花”的学名应为蝉棒束孢Isaria cicadae Miquel[3-4]。“蝉花”是一种药食两用的食材,在云南怒江、迪庆及大理等地居住的藏族、纳西族、白族、普米族、彝族和傈僳族常将“蝉花”制作成“虫草炖鸡”,滋补强壮的作用明显。研究表明,蝉棒束孢具有多种与冬虫夏草相同的功效成分,如多糖、虫草酸、氨基酸、核苷类成分、麦角甾醇、维生素和微量元素等[5-8],此外还含有一些与冬虫夏草不同的成分,如多球壳菌素、N6-(2-羟乙基) 腺苷和角鲨烯[9-11]等;蝉棒束孢具有多种药理药效,如滋补强壮、抗疲劳[12]、免疫调节[13]、抗衰老[14]、改善肾功能[15]、降血糖[16]、解热镇痛、镇静催眠[17-18]和抗肿瘤[16, 19-20]等,在民间常被用作冬虫夏草的代用品,此外,蝉棒束孢还是一种重要的生防菌[21-23]。因此,蝉棒束孢是一种具有巨大开发利用价值的虫生真菌。
图 1. 野生蝉棒束孢 Figure 1. Wild I. cicadae. A, B, C: I. cicadae distributed in evergreen broad-leaf forest (Pop ICKGS); D: I. cicadae distributed in bamboo forest (Pop ICYTS). |
图选项 |
蝉棒束孢分布于中国、韩国、日本、澳大利亚、新西兰、巴西、南亚、欧洲、北美等国家及地区,可适应多种气候条件,我国蝉棒束孢资源十分丰富,分布于秦岭-淮河以南18个省区[24-27],主要生长于竹林、常绿阔叶林和针阔叶混交林等生境,蝉棒束孢既能生长于土壤中[25],也可以寄生于多种昆虫,包括山蝉Cicada flammata Distant、蟪姑Platypleura kaempferi Fabricius、黑蚱Crytotympana pustulata Fabricious、竹蝉Platylomia pieli Kato和鸣鸣蝉Oncotympana maculatieollis Motsch[1, 7, 21, 26]。
在生境和寄主等层次上,蝉棒束孢表现出丰富的多样性。前期研究发现,蝉棒束孢的菌核、孢梗束和菌落等形态性状变异丰富[24, 28],关于蝉棒束孢居群形态性状的研究则较少,前人关于蝉棒束孢显微形态的研究主要是对单个或几个菌株描述,而不是以居群为单位进行统计调查分析,相关形态数据不全面,且部分形态性状描述较少或不清,如厚垣孢子、融合菌丝等[21, 24, 28]。此外,蝉棒束孢菌丝体生理特性和显微形态特征与其适应力、菌种保藏及资源开发应用等方面有关,有必要系统地开展蝉棒束孢居群菌株显微形态学研究。本研究收集云南、江苏、浙江、安徽、福建、江西和广东等省共15个蝉棒束孢居群菌株,对蝉棒束孢居群菌株性状进行观察、描述和测量,并使用SAS 8.1软件对居群显微形态性状数据分析,试图揭示蝉棒束孢居群显微形态变异式样,为蝉棒束孢资源的有效保护和合理开发利用提供基础数据。
1 材料和方法 1.1 材料 15个蝉棒束孢居群,其菌株分离自野生蝉棒束孢,来源见表 1,根据其菌丝体形态及产孢结构、ITS序列鉴定为蝉棒束孢,菌种保存于云南大学中草药生物资源研究所云百草实验室。
表 1. 15个蝉棒束孢居群来源 Table 1. Locality of 15 populations of I. cicadae
No. of populations | No. of strains | Location |
ICLHH | ICLHH (1, 2, 6, 7, 8) | Hedongqing, Hexi, Lanping, Yunnan province (云南省,兰坪县,河西乡,河东箐村) |
ICKGS | ICKGS (9, 10, 11, 13, 14) | Yeyahu, Gelezi, Shuanglongxiang, Kunming, Yunnan province (云南省,昆明市,双龙乡,歌乐子村野鸭湖) |
ICYTS | ICYTS (1, 2, 3, 18, 20) | Sanzhoushan, Taihua, Yixing, Jiangsu province (江苏省,宜兴市,太华镇,三洲山) |
ICJMP | ICJMP (1, 2, 3, 4, 5) | Mopanshan, Jurong, Jiangsu province (江苏省,句容市,磨盘山) |
ICHTM | ICHTM (1, 3, 4, 5, 6) | Tianmushan, Hangzhou, Zhejiang province (浙江省,杭州市,天目山) |
ICWYD | ICWYD (1, 3, 5, 6, 7) | Yandangshan, Wenzhou, Zhejiang province (浙江省,温州市,雁荡山) |
ICZLH | ICZLH (1, 2, 3, 4, 5) | Linhai, Taizhou, Zhejiang province (浙江省,台州市,临海市) |
ICJJJ | ICJJJ (1, 2, 3, 4, 5) | Taiping, Pengze, Jiujiang, Jiangxi province (江西省,九江市,彭泽县,太平乡) |
ICAHS | ICAHS (1, 2, 4, 5, 6) | Huangshan, Anhui province (安徽省,黄山) |
ICAHU | ICAHU (2, 3, 7, 8, 10) | Taoyuan, Zhufoan, Huoshan, Anhui province (安徽省,霍山县,诸佛庵镇,桃源河乡) |
ICATL | ICATL (1, 5, 8, 9, 11) | Jinshan, Zhongming, Tongling, Anhui province (安徽省,铜陵县,钟鸣镇,金山村) |
ICACZ | ICACZ (1, 2, 3, 5, 7) | Guichi, Chizhou, Anhui province (安徽省,池州市,贵池区) |
ICFZC | ICFZC (3, 4, 6, 9, 11) | Chengxi, Longhai, Zhangzhou, Fujian province (福建省,漳州市,龙海市,程溪镇) |
ICFSM | ICFSM (2, 3, 4, 5, 6) | Zhongcun, Zhongcun, Sanyuan, Sanming, Fujian province (福建省,三明市,三元区,中村乡,中村村) |
ICGHY | ICGHY (1, 2, 3, 4, 5) | Luoguiao, Shangling, Heping, Heyuan, Guangdong province (广东省,河源市,和平县,上陵镇,落归凹) |
表选项
1.2 ITS测序 将菌株接种于PDA固体培养基培养2周左右,刮取菌丝,采用改良CTAB法[29]提取菌株总DNA。参考White等使用的引物 (ITS4:5′-TCCTCCGCTTATTGATATGC-3′;ITS5:5′-GG AAGTAAAAGTCGTAACAAGG-3′)[30],扩增的反应体系50 μL:灭菌去离子水33 μL、10×缓冲液 (含2 mmol/L Mg2+) 5 μL、2.5 mmol/L dNTPs 4 μL、二甲基亚砜 (dimethyl sulfoxid,DMSO) 2.5 μL、10 μmol/L正向引物和反向引物各2 μL、5 U Taq酶0.5 μL、模板 (20 ng/μL) 1 μL。PCR扩增程序:95 ℃ 4 min;94 ℃ 50 s,52 ℃ 50 s,72 ℃ 50 s,循环30次;72 ℃ 10 min,12 ℃保存。扩增完成后,用1%琼脂糖胶检测扩增片段,选取条带清楚并无杂质的样品,用EasyPureTM Quick Gel Extraction Kit试剂盒进行纯化后,送至北京六合华大基因股份有限公司进行测序。利用Bioedit检测ABI文件中峰图的优劣,选取无双峰、无杂合的序列,利用Lasergene 7.1中的EditSeq批量输出。将测序获得的ITS序列与GenBank下载的蝉棒束孢ITS序列进行比对。
1.3 蝉棒束孢菌落及菌丝体显微形态性状观察 将蝉棒束孢接种于PDA培养基上,于25 ℃恒温箱中培养,观察其菌落形态;在培养皿内垫一层滤纸,放上1根U形管,上面放载玻片及盖玻片,灭菌,在凹陷载玻片上放小片灭菌PDA培养基薄层,并加1 mL无菌水于滤纸片上,将蝉棒束孢接种于培养基上,于25 ℃恒温箱中培养,接种后第2天开始用显微照相机 (奥林巴斯显微镜CX40) 观察,观察和记录菌丝、分生孢子、厚垣孢子、融合菌丝和产孢细胞等相关形态性状,其中,根据蝉棒束孢分生孢子大小,可区分为大孢子和小孢子2种类型,但大孢子不多见,见图 2-A;根据小孢子的形状又可分为柱形分生孢子和椭圆形分生孢子,见图 2-B和2-C,但大多数菌株的小孢子为柱形分生孢子,由于蝉棒束孢的大孢子和椭圆形小孢子较少见,不满足生物统计学的要求,因而本文只对分析柱形小分生孢子的形态学进行研究。性状名称、编号和说明等见表 2。采用生物统计方法[31],每个居群随机选取5个菌株,每个菌株的各形态性状随机测定10个观测值。
图 2. 蝉棒束孢分生孢子形态 Figure 2. The morphology of the asexual conidium of I. cicadae. A: the large and small asexual conidium in I. cicadae (ICKGS 9); B: cylindrical conidium of I. cicadae (ICKGS 11); C: elliptical conidium of I. cicadae (ICKGS 13). Bar=10 μm. |
图选项 |
表 2. 蝉棒束孢显微观察性状编号及说明 Table 2. The number of morphological traits of I. cicadae
No. of morphological characters | Name of morphological characters |
JSK | The width of hyphae |
BZC | The length of the small cylindrical conidium |
BZK | The width of the small cylindrical conidium |
HYC | The length of chlamydospores |
HYK | The width of chlamydospores |
JHC | The length of fusion hyphae |
JHK | The width of fusion hyphae |
PGC | The length of bottle-shaped conidiogenous cells |
PGK1 | The width of the basal part of bottle-shaped conidiogenous cells |
PGK2 | The width of the middle part of bottle-shaped conidiogenous cells |
PGK3 | The width of the neck part of bottle-shaped conidiogenous cells |
HLC | The length of gourd-shaped conidiogenous cells |
HLK1 | The width of the basal part of the bottom half of gourd-shaped conidiogenous cells |
HLK2 | The width of the middle part of the bottom half of gourd-shaped conidiogenous cells |
HLK3 | The width of the middle part of gourd-shaped conidiogenous cells |
HLK4 | The width of the middle part of the top half of gourd-shaped conidiogenous cells |
HLK5 | The width of the neck part of gourd-shaped conidiogenous cells |
表选项
1.4 数据分析方法 参考何显静等SAS 8.1的使用方法[32],计算蝉棒束孢显微形态性状的基本统计量 (描述性分析);为进一步了解蝉棒束孢显微形态性状方差在居群 (population) 个体 (individual) 和菌株内观察值 (observation) 的分配情况,利用SAS 8.1进行巢式方差分析。此外,使用AVE聚类法对15个居群蝉棒束孢显微形态性状的平均值进行居群间聚类分析。
2 结果和分析 2.1 蝉棒束孢ITS序列 本文共扩增15个居群75个样,并于国际核酸数据库NCBI中下载蝉棒束孢ITS序列,共获得蝉棒束孢ITS序列100条。比对结果发现,蝉棒束孢ITS序列无位点多态性,即在ITS序列中,无种内多样性,核苷酸多样性为0。ITS测序结果表明,本文所研究的菌株均为蝉棒束孢。蝉棒束孢的ITS序列见表 3。
表 3. 蝉棒束孢ITS序列 Table 3. The sequences of ITS in I. cicadae
Sequence names | Sequences |
ITS1 | CCAGAGTTTTACAACTCCCAACCCTTCTGTGAACCTACCCATCGTTGCTTCGGCGGACTCGCCCCAGCGTCCGGACGGCCCTGCGCCGGCCCGCGACCTGGACCCAGGCGGCCGCCGGAGACCACGCAACCCTGTATCCATCAGTCTCTCTGAATCCGCCGCAAGGCAACACAAATGAATCAA |
5.8S rDNA | AACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTC |
ITS2 | AACCCTCGACGTCCCCTGGGACGTCGGCCTTGGGGACCGGCAGCACCCCGCCGGCCCTGAAATAGAGTGGCGGCCCGTCCGCGGCGACCTCTGCGCAGTACAACCACTCGCACCGGGAACCCGACGCGGCCCGCCGTGAAACCCCCAACCTCTGAACG |
表选项
2.2 蝉棒束孢显微形态
2.2.1 蝉棒束孢分生孢子: 分生孢子向基式产生分生孢子链于产孢细胞顶端,或单生于产孢细胞顶端,多数为柱形,少量分生孢子为长椭圆形至圆形,单胞,壁光滑,无色透明,少数弯曲,常见1-3个脂滴,偶见两细胞孢子。通过对15个居群75个蝉棒束孢菌株的培养观察,发现蝉棒束孢多数个体仅见小孢子,仅在菌株ICKGS 9、ICFSM 5、ICGHY 3中观察到少量的大孢子,大孢子见图 2-A箭头指示部分。根据小孢子的形状,可以将蝉棒束孢分生孢子形态分为以下2种类型:柱形分生孢子呈柱形,两端稍尖,中部微收缩,大部分蝉棒束孢菌株具有这种类型的孢子,见图 2-B;椭圆形分生孢子呈拟卵圆形至圆形、卵圆形,见图 2-C。:
2.2.2 蝉棒束孢菌落及产孢细胞: 菌落在PDA培养基上25 ℃培养10 d,直径为10-20 mm,毡状至绒毛状,菌丝浓密,灰白色至茶黄色,菌落背面淡黄色至菊黄色,具放射状沟纹。菌丝管状,分隔,壁光滑,无色透明,宽0.84-5.70 μm。分生孢子梗柱形或肾形,不分隔,不规则分支于可育性菌丝上,稠密,直立或弯曲,长3.90-16.21 μm,宽1.24-3.43 μm。产孢细胞 (也称瓶梗) 2-7个轮生于分生孢子梗顶端,或直接从可育菌丝上长出,长4.68-25.83 μm,基部膨大,葫芦形或瓶形,宽1.24-10.16 μm,向上形成突然变细的颈部,宽0.39-2.45 μm。产孢细胞的形态可分为葫芦状和瓶状2种类型,葫芦状产孢细胞偶见图 3-A、3-B、3-C及3-D,并可见少量的连珠状产孢细胞;瓶状产孢细胞见图 3-E和3-F),产孢细胞可基部膨大形成典型的瓶状产孢细胞,也可见基部膨大不明显,形成类披针形的瓶状产孢细胞。:
图 3. 蝉棒束孢产孢细胞 Figure 3. The morphology of the conidiogenous cells of I. cicadae. A, B: gourd-shaped conidiogenous cells (ICZLH 4); C: bottle terrier prolification (ICAHS 5); D: renju shape conidiogenous cells (ICWYD 6); E, F: bottle-shaped conidiogenous cells (ICATL 9). Bar=10 μm. |
图选项 |
2.2.3 蝉棒束孢厚垣孢子: 将蝉棒束孢接种于PDA培养基,可于2 d后在培养基中及气生菌丝的侧枝观察到厚垣孢子,蝉棒束孢易形成大量厚垣孢子,见图 4,厚垣孢子单生于菌丝的单侧枝顶端,棒状、肾形或茄子形,常弯曲,大小 (4.60-33.91) μm×(2.23-11.53) μm,深褐色,单胞,壁光滑,常见1-3个脂滴。:
2.2.4 蝉棒束孢菌丝: 蝉棒束孢菌丝的宽度变化较大,相邻的菌丝间易形成H型融合菌丝,相距达到几十微米远的菌丝亦可形成融合菌丝,厚垣孢子与菌丝、产孢细胞之间 (瓶状和葫芦状产孢细胞) 也可形成融合菌丝,见图 5。:
图 4. 蝉棒束孢厚垣孢子 Figure 4. Chlamydospores of I. cicadae (ICFZC 3). A: a very large numbers of chlamydospores of I. cicadae were easy to form in PDA medium; B, C: different shaped chlamydospores; D: lipid droplets in chlamydospore. Bar=10 μm. |
图选项 |
图 5. 蝉棒束孢“H”型融合菌丝 Figure 5. H type fusion hyphae of I. cicadae. A, B, C: H type fusion hyphae formed between the hypha (ICFSM 2); D: the fusion hyphae between conidiogenous cells (ICGHY 4). Bar=10 μm. |
图选项 |
2.3 蝉棒束孢菌丝体及产孢细胞的形成 挑取少量孢子粉接种于PDA培养基,于25 ℃培养1 d后,孢子开始萌发,形成芽状突起,芽状突起可于孢子的两端和中部形成,见图 6-A和6-B,接着菌丝长长并形成分枝,见图 6-C,6-D及6-E),孢子在萌发形成菌丝体初期即可形成融合菌丝,见图 6-F。随着菌丝的生长和延长,培养2-3 d后,于菌丝的顶端或分枝处形成柱形或肾形的分生孢子梗,接着在分生孢子梗上长出圆形产孢细胞原基,并形成葫芦状或瓶状的产孢细胞,产孢细胞上形成芽状的颈部,从产孢细胞颈部生成分生孢子,见图 7。
图 6. 蝉棒束孢孢子萌发生长过程 Figure 6. Germination and growth of asexual conidium in I. cicadae (ICKGS 14). Bars=10 μm. A, B: germination of asexual conidium; C, D, E: mycelial growth of I. cicadae; F: H type fusion hyphae formed between the hypha derived from two spores. |
图选项 |
图 7. 蝉棒束孢产孢细胞的形成 Figure 7. The formation of conidiogenous cells in I. cicadae. A: the beginning of the formation of conidiogenous cells (ICJMP 1); B, C: the formation of conidiogenous cells neck (ICJMP 1); D: the beginning of the formation of asexual conidium (ICJMP 1). Bar=10 μm. |
图选项 |
2.4 蝉棒束孢显微形态变异式样
2.4.1 描述性分析: 计算蝉棒束孢17个显微形态性状的平均值、标准差、最小值、最大值和变异系数 (Coefficient of variation,CV) 见表 4。蝉棒束孢17个显微形态性状最大值与最小值的比值为2.52-81.24,蝉棒束孢各形态性状的变化范围大;17个显微形态性状的变异系数值为13.07%-104.09%,融合菌丝长 (JHC) 的CV值最大 (CV=104.09%),这与形成融合菌丝的菌丝间距离有关。蝉棒束孢显微形态性状变异较大,各个形态性状在物种水平变异丰富。: 表 4. 蝉棒束孢显微形态性状分析结果 Table 4. The analysis of morphologic traits of I. cicadae
No. of variable | Number of observations | Mean/μm | Std Dev | Minimum/μm | Maximum/μm | Coefficient of variation/% |
JSK | 750 | 2.34 | 0.59 | 0.84 | 5.70 | 25.27 |
BZC | 750 | 7.40 | 0.97 | 4.42 | 14.48 | 13.07 |
BZK | 750 | 3.45 | 0.55 | 2.08 | 5.25 | 15.82 |
HYC | 750 | 15.63 | 3.57 | 4.60 | 33.91 | 22.85 |
HYK | 750 | 6.13 | 1.17 | 2.23 | 11.53 | 19.03 |
JHC | 750 | 7.57 | 7.88 | 0.88 | 71.49 | 104.09 |
JHK | 750 | 1.94 | 0.56 | 0.64 | 9.79 | 29.01 |
PGC | 750 | 8.34 | 2.16 | 4.68 | 19.32 | 25.89 |
PGK1 | 750 | 2.58 | 0.55 | 1.24 | 5.39 | 21.21 |
PGK2 | 750 | 3.67 | 0.53 | 1.63 | 5.53 | 14.57 |
PGK3 | 750 | 1.25 | 0.34 | 0.44 | 2.45 | 27.16 |
HLC | 750 | 12.37 | 2.07 | 7.14 | 25.83 | 16.77 |
HLK1 | 750 | 2.92 | 0.63 | 1.42 | 6.27 | 21.49 |
HLK2 | 750 | 3.96 | 0.72 | 1.77 | 10.16 | 18.18 |
HLK3 | 750 | 2.32 | 0.49 | 0.73 | 4.39 | 21.19 |
HLK4 | 750 | 3.65 | 0.59 | 1.48 | 7.93 | 16.31 |
HLK5 | 750 | 1.22 | 0.34 | 0.39 | 2.31 | 28.03 |
表选项
2.4.2 巢式方差分析: 由蝉棒束孢17个形态性状基本统计量可知,蝉棒束孢显微形态性状变异丰富,为了进一步的揭示蝉棒束孢的17个显微形态性状在居群间、个体间和个体内观测值间的方差分布情况,采用巢式方差分析对数据做了进一步的解析,见表 5,居群间的平均方差分量占总变异的11.29%,居群内个体间的平均方差分量占总变异的15.27%,个体内观察值间的平均方差分量占总变异的73.44%,表明蝉棒束孢菌株个体内形态性状变异丰富,居群内个体是形态性状变异的主要来源,居群间的分化不明显。: 表 5. 蝉棒束孢15个居群17个性状巢式方差分析 Table 5. Nested analysis of 17 morphological variance among populations of I. cicadae
No. of variable | Percent of total variance/% | Percent of population variance/% | Percent of individual variance/% | Percent of observation variance/% | F Value | Pr > F |
JSK | 100.00 | 9.14 | 11.08 | 79.78 | 2.39 | < 0.0001 |
BZC | 100.00 | 7.17 | 29.51 | 63.33 | 5.66 | < 0.0001 |
BZK | 100.00 | 21.93 | 30.46 | 47.61 | 7.40 | < 0.0001 |
HYC | 100.00 | 10.84 | 13.76 | 75.41 | 2.82 | 0.2917 |
HYK | 100.00 | 11.11 | 28.69 | 60.20 | 5.77 | < 0.0001 |
JHC | 100.00 | 1.66 | 6.07 | 92.27 | 1.66 | 0.0019 |
JHK | 100.00 | 5.49 | 6.43 | 88.08 | 1.73 | 0.0008 |
PGC | 100.00 | 5.69 | 15.20 | 79.12 | 2.92 | 0.0032 |
PGK1 | 100.00 | 8.40 | 18.12 | 73.48 | 3.47 | < 0.0001 |
PGK2 | 100.00 | 12.96 | 13.40 | 73.64 | 2.82 | < 0.0001 |
PGK3 | 100.00 | 10.07 | 19.59 | 70.35 | 3.78 | < 0.0001 |
HLC | 100.00 | 11.23 | 10.31 | 78.46 | 2.31 | < 0.0001 |
HLK1 | 100.00 | 11.93 | 11.93 | 76.14 | 2.57 | < 0.0001 |
HLK2 | 100.00 | 14.91 | 3.90 | 81.20 | 1.48 | 0.0131 |
HLK3 | 100.00 | 19.71 | 14.51 | 65.78 | 3.21 | < 0.0001 |
HLK4 | 100.00 | 17.30 | 10.40 | 72.29 | 2.44 | < 0.0001 |
HLK5 | 100.00 | 12.34 | 16.23 | 71.43 | 3.27 | < 0.0001 |
Mean | 100.00 | 11.29 | 15.27 | 73.44 | — | — |
表选项
2.4.3 Q-聚类分析: 采用类平均法 (Average linkage) 对蝉棒束孢15个居群17个性状的平均值进行Q-聚类分析,反映蝉棒束孢种内居群间的相关性,见图 8,15个居群蝉棒束孢17个显微形态性状的Q聚类图未见明显的地理相关性,表明蝉棒束孢显微形态性状不存在明显的地理相关性,这与蝉棒束孢居群间没有明显的形态性状分化有关。:
图 8. 15个居群蝉棒束孢17个形态性状AVE聚类法的谱系聚类图 Figure 8. Q-cluster of 17 morphological traits assayed in 15 populations of I. cicadae sampled with average linkage method. |
图选项 |
3 讨论 rDNA上的5.8S、18S和28S rDNA基因有极大的保守性,即存在着广泛的异种同源性。由于ITS区不加入成熟核糖体,所以ITS片段在进化过程中承受的自然选择压力非常小,因此能承受更多的变异。在绝大多数的真核生物中表现出了极为广泛的序列多态性,即使是亲缘关系非常接近的2个种都能在ITS序列上表现出差异,种内存在一定的差异[33-36],但本文获得的蝉棒束孢的100条ITS序列变异率为0,表明本文所研究的蝉棒束孢居群间ITS序列是高度一致的。有鉴于不同居群蝉棒束孢ITS片段没有变异位点,该片段可以作为蝉棒束孢一个稳定的标记。
刘爱英等分别对产自云南、贵州、四川、福建和韩国等地的12株蝉棒束孢的分生孢子梗、产孢细胞、分生孢子和菌丝等进行了形态描述,蝉棒束孢菌株显微形态表现出了丰富的变异[28],但由于相关形态数据的测量和分析未按照居群生物学统计的要求取样,关于蝉棒束孢显微形态在居群、个体的分布式样及其规律还有待进一步研究,本研究对15个居群共75个蝉棒束孢菌株,17个形态性状的观察、测量和分析,表明在物种水平,蝉棒束孢显微形态性状变异丰富;在居群水平,形态性状分化较小 (11.29%),居群间分化不明显;菌株水平形态性状变异则十分丰富 (73.44%),即菌株形态性状变异丰富,是蝉棒束孢显微形态性状变异丰富的主要来源。蝉棒束孢居群间形态性状分化较小可能与其繁育方式有关,到目前为止,还没有关于野生蝉棒束孢有性型的相关报道,仅见刘爱英报道在广西乐业县大石围天坑群的神木采集的“蝉花”标本 (标本号:GZUIFR08721-6) 中,发现疑似野生蝉棒束孢有性产孢结构,但没有最终确认。我们团队采集到的20余个居群的野生蝉棒束孢干材料或新鲜材料中均未发现其有性产孢结构,表明野生蝉棒束孢在自然条件下主要是以产生无性分生孢子的方式进行无性繁殖,这使得其遗传物质相对稳定,居群间分化也较小。结合蝉棒束孢在全球的分布情况,说明蝉棒束孢可能具有较强的扩散传播能力,但其是如何扩散和传播还有待进一步的研究。此外,蝉棒束孢在居群内个体表现出丰富的变异,这可能与蝉棒束孢可适应多种生境和寄主有关[1, 21, 24-27]。
本研究还发现在所培养观察的75个蝉棒束孢菌株中观察到大量的“H”形融合菌丝,“H”形融合菌丝可在菌丝间、厚垣孢子与菌丝、产孢细胞 (瓶状和葫芦状产孢细胞) 与菌丝间生成,大量融合菌丝的形成表明蝉棒束孢普遍存在准性生殖,这与刘爱英的报道一致[24]。准性生殖有利于蝉棒束孢菌株和菌丝间的基因交流,是其遗传变异的一个重要来源,可以利用蝉棒束孢这一特性进行优良菌株育种方面的研究。此外,蝉棒束孢在PDA培养基中易形成厚垣孢子,在PDA培养基上接种后的第2天即可开始形成大量的厚垣孢子,厚垣孢子是真菌为了抵御不良外界环境形成的壁厚,寿命长的无性孢子。厚垣孢子相对稳定的保持了亲本的遗传稳定性,具有耐缺营养、抗低温、干燥和无氧等逆境的能力,可防止菌种退化,利于长期保藏。另外,蝉棒束孢是一类重要的生防菌,对昆虫具有较强的感染能力[22-23, 37],其易形成厚垣孢子和融合菌丝的特性有利于其作为生防菌推广。
在有性生殖过程中,基因组合的广泛变异能增加子代适应自然选择的能力。有性生殖产生的后代中随机组合的基因对物种可能有利,也可能不利,但至少会增加少数个体在难以预料和不断变化的环境中存活的机会,从而对物种有利。蝉棒束孢感染寄主后,将有限的营养用于生成大量无性孢子,这有利于蝉棒束孢的扩散和传播。蝉棒束孢生殖方式以无性生殖为主,虽然有利于其繁育大量的后代,但不利于其适应逆境,蝉棒束孢通过形成大量厚垣孢子的方式增强了其适应逆境的能力,在此基础上,通过形成大量的融合菌丝,增加菌株、菌丝、产孢细胞间的基因重组,在一定程度上解决了其繁育方式的不足之处,蝉棒束孢在一定程度上成功解决了无性繁殖与适应性进化的矛盾,但这还需要进一步的研究证明。
参考文献
[1] | Li BL. Herbal textuals research on "Chan Hua".Journal of Modern Applied Pharmacy, 1993, 10(2): 22, 21(in Chinese).李冰岚. 蝉花的本草学考证.现代应用药学, 1993, 10(2): 22, 21. |
[2] | Xing XQ. Classification of Cordyceps sobolifera (Hill) berk. et Br. and Cordyceps cicadae shing sp. nov..Acta Microbiologica Sinica, 1975, 15(1): 21–26(in Chinese).幸兴球. 大蝉草和小蝉草的分类.微生物学报, 1975, 15(1): 21–26. |
[3] | Luangsa-Ard JJ, Hywel-Jones NL, Samson RA. The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny.Mycologia, 2004, 96(4): 773–780DOI:10.1080/15572536.2005.11832925. |
[4] | Luangsa-Ard JJ, Hywel-Jones NL, Manoch L, Samson RA. On the relationships of Paecilomyces sect. Isarioidea species.Mycological Research, 2005, 109(5): 581–589DOI:10.1017/S0953756205002741. |
[5] | Hua WW, Zhao L, Su X. Comparison of polysaccharide of Cordyceps sinensis and Cordyceps cicadae.Journal of Modern Applied Pharmacy, 1989, 6(5): 13–14(in Chinese).华巍巍, 赵岚, 苏新. 冬虫夏草和蝉花的多糖成份比较.现代应用药学, 1989, 6(5): 13–14. |
[6] | Wang Q, Liu ZY. Advances in studies on medicinal fungi Cordyceps cicadae.Chinese Traditional and Herbal Drugs, 2004, 35(4): 469–471(in Chinese).王琪, 刘作易. 药用真菌蝉花的研究进展.中草药, 2004, 35(4): 469–471. |
[7] | Zeng WB, Yu H, Ge F, Yang JY, Chen ZH, Wang YB, Dai YD, Adams A. Distribution of nucleosides in populations of Cordyceps cicadae.Molecules, 2014, 19(5): 6123–6141DOI:10.3390/molecules19056123. |
[8] | Yu SJ, Chai XY, Fan MZ. Analysis of nutritional and bioactive components of solid-state fermented substrate of Isaria cicadae.Food & Machinery, 2015, 31(1): 155–158(in Chinese).于士军, 柴新义, 樊美珍. 蝉花菌质主要营养成分和活性成分分析.食品与机械, 2015, 31(1): 155–158. |
[9] | Fujita T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite.The Journal of Antibiotics, 1994, 47(2): 208–215DOI:10.7164/antibiotics.47.208. |
[10] | Peng XX, Chai YQ, Zhu BC, Jin YW, Li XL, Yu LS. The protective effects of N6-(2-hydroxyethyl)-adenosine extracted from Ophiocordyceps sobolifera on renal ischemia reperfusion injury (IRI) in mice.Mycosystema, 2015, 34(2): 311–320(in Chinese).彭秀秀, 柴一秋, 朱碧纯, 金轶伟, 厉晓腊, 喻林升. 蝉花虫草提取物N6-(2-羟乙基) 腺苷对小鼠肾脏缺血再灌注损伤的保护作用.菌物学报, 2015, 34(2): 311–320. |
[11] | Wei YL, Yang MF, Liu AY, Zou X. Determination of squalene in Cordyceps cicadae by capillary gas chromatography.Chinese Journal of Pharmaceutical Analysis, 2014, 34(11): 1975–1978(in Chinese).卫亚丽, 杨茂发, 刘爱英, 邹晓. 毛细管气相色谱法测定中药蝉花中角鲨烯的含量.药物分析杂志, 2014, 34(11): 1975–1978. |
[12] | Wang Y, Zhao XJ, Tang FD. Research into pharmacological action of Chanhua.Zhejiang Journal of Traditional Chinese Medicine, 2001, 36(5): 219–220(in Chinese).王砚, 赵小京, 唐法娣. 蝉花药理作用的初步探讨.浙江中医杂志, 2001, 36(5): 219–220. |
[13] | Weng SC, Chou CJ, Lin LC, Tsai WJ, Kuo YC. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae.Journal of Ethnopharmacology, 2002, 83(1/2): 79–85. |
[14] | Yang JZ, Jin LQ, Lv JX, Yuan Q, Jin J. The experimental study of Paecilomyces cicadicae polysaccharides on anti-aging.Chinese Journal of Gerontology, 2004, 24(4): 343–344(in Chinese).杨介钻, 金丽琴, 吕建新, 袁谦, 金晶. 蝉拟青霉多糖抗衰老作用的实验研究.中国老年学杂志, 2004, 24(4): 343–344. |
[15] | Zhu R, Chen YP, Deng YY, Zheng R, Zhong YF, Wang L, Du LP. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model.Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2011, 12(12): 1024–1033. |
[16] | Kiho T, Nagai K, Miyamoto I, Watanabe T, Ukai S. Polysaccharides in fungi. XXV. Biological activities of two galactomannans from the insect-body portion of Chán hua (Fungus:Cordyceps cicadae).Yakugaku Zasshi, 1990, 110(4): 286–288. |
[17] | Liu GY, Hu SY. Comparison of sedative and analgesic effects between Cordyceps cicadidae and its cultured product.Chinese Journal of Modern Applied Pharmacy, 1991, 8(2): 5–8(in Chinese).刘广玉, 胡菽英. 天然蝉花和人工培养品镇静镇痛作用的比较.现代应用药学, 1991, 8(2): 5–8. |
[18] | Chen ZA, Liu GY, Hu SY. Studies on cultivation of Paecilomyces cicadae and its pharmacological function.Acta Mycologica Sinica, 1993, 12(2): 138–144(in Chinese).陈祝安, 刘广玉, 胡菽英. 蝉花的人工培养及其药理作用研究.真菌学报, 1993, 12(2): 138–144. |
[19] | Ukai S, Kiho T, Hara C, Morita M, Goto A, Imaizumi N, Hasegawa Y. Polysaccharides in Fungi. XIII. Antitumor activity of various polysaccharides isolated from Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae, and Auricularia species.Chemical & Pharmaceutical Bulletin, 1983, 31(2): 741–744. |
[20] | Lu BZ, Jiang ZM, Mou HZ, Hou GL, Wang CL. Experimental study on cordyceps cicadae extract on human low-transfer plumonary cancer line PAA.Chinese Journal of Traditional Medical Science and Technology, 2006, 13(5): 328–329(in Chinese).芦柏震, 姜志明, 牟翰舟, 侯桂兰, 王春雷. 蝉花粗提物对肺癌细胞作用的实验研究.中国中医药科技, 2006, 13(5): 328–329. |
[21] | Chen ZA. Study on entomogenous fungus, Paecilomyces cicadae.Acta Mycologica Sinica, 1991, 10(4): 280–287(in Chinese).陈祝安. 虫生真菌蝉拟青霉的研究.真菌学报, 1991, 10(4): 280–287. |
[22] | Chai YQ. Solid culture and pathogenicity to Pieris rapae of the J-PC strain of Paecilomyces cicadae.Chinese Journal of Biological Control, 1995, 11(4): 168–170(in Chinese).柴一秋. 蝉拟青霉J-PC菌株的固体发酵及对菜青虫的病原性测定.中国生物防治, 1995, 11(4): 168–170. |
[23] | Li Z, Jin DC, Zou X, Liu AY. Preliminary study on pathogenicity of Paecilomyces cicadae to aphids.Journal of Anhui Agricultural Sciences, 2007, 35(25): 7882–7883(in Chinese).李忠, 金道超, 邹晓, 刘爱英. 蝉拟青霉对蚜虫的致病性研究.安徽农业科学, 2007, 35(25): 7882–7883. |
[24] | 刘爱英. 中国蝉花资源研究应用.贵阳: 贵州科技出版社, 2012. |
[25] | Yaginuma K. Paecilomyces cicadae samson isolated from soil and cicada, and its virulence to the peach fruit moth, Carposina sasakii Matsumura.Japanese Society of Applied Entomology and Zoology, 2002, 46(4): 225–231DOI:10.1303/jjaez.2002.225. |
[26] | 陈祝安, 李增智, 陈以平. 金蝉花:实现一个民族健康的伟大梦想.北京: 中医古籍出版社, 2014. |
[27] | 毕志树, 陈国良, 黄年来, 纪大干, 姜守忠, 居如生, 李泰辉, 刘波, 马启明, 彭寅斌, 邵力平, 谭惠慈, 魏润黔, 王云, 项存悌, 谢支锡, 应建浙, 臧穆, 曾晓濂, 郑国扬. 中国食用菌志.北京: 中国林业出版社, 1991. |
[28] | Liu AY, Zou X, Zhao JH, Liang ZQ, Tan AJ, Zheng QY. Biological diversity of Paecilomyces cicadae Ⅰ. Morphological diversity of cicadae flower and Paecilomyces cicadae.Guizhou Agricultural Sciences, 2007, 35(2): 9–11(in Chinese).刘爱英, 邹晓, 赵杰宏, 梁宗琦, 谭艾娟, 郑庆友. 蝉拟青霉生物多样性Ⅰ.蝉花和蝉拟青霉的形态多样性.贵州农业科学, 2007, 35(2): 9–11. |
[29] | Zhang YH, Wei DS, Xing LJ, Li MC. A modified method for isolating DNA from fungus.Microbiology China, 2008, 35(3): 466–469(in Chinese).张颖慧, 魏东盛, 邢来君, 李明春. 一种改进的丝状真菌DNA提取方法.微生物学通报, 2008, 35(3): 466–469. |
[30] | White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis M A, Gelfand D H, Sninsky J J, White T J. PCR Protocols:A Guide to Methods and Applications. New York:Academic Press, 1990. |
[31] | 杜荣骞. 生物统计学.北京: 高等教育出版社, 2014. |
[32] | He XJ, Wang BY, Yu H. Usage of SAS in study the morphological diversity of Lilium davidii Duchartre.Journal of Yunnan University, 2003, 25(S): 75–77(in Chinese).何显静, 王兵益, 虞泓. SAS系统在川百合形态变异式样研究中的运用.云南大学学报 (自然科学版), 2003, 25(S): 75–77. |
[33] | Jiang Y, Yao YJ. Current understanding of molecular systematics of Cordyceps.Journal of Fungal Research, 2004, 2(1): 58–67(in Chinese).蒋毅, 姚一建. 虫草属分子系统学研究现状.菌物研究, 2004, 2(1): 58–67. |
[34] | Su CL, Tang CH, Zhang JS, Chen MJ, Pan YJ. The phylogenetic relationship of cultivated isolates of Ganoderma in China inferred from nuclear ribosomal DNA ITS sequences.Acta Microbiologica Sinica, 2007, 47(1): 11–16(in Chinese).苏春丽, 唐传红, 张劲松, 陈明杰, 潘迎捷. 基于rDNA ITS序列探讨中国栽培灵芝菌株的亲缘关系.微生物学报, 2007, 47(1): 11–16. |
[35] | Yan Y, Li WP, Gao WJ, Shen ZY, Wang HH, Chen LX. Application of rDNA ITS sequence analysis in fungus identification.Chinese Journal of Health Laboratory Technology, 2008, 18(10): 1958–1961(in Chinese).燕勇, 李卫平, 高雯洁, 沈志英, 王恒辉, 陈黎霞. rDNA-ITS序列分析在真菌鉴定中的应用.中国卫生检验杂志, 2008, 18(10): 1958–1961. |
[36] | Li XF, Qiu TB, Zhang HM, Hu LX, Hu CY, Zheng NN, Tang L. ITS sequences and phylogenetic relationships of dandelions from different areas.Chinese Pharmaceutical Journal, 2013, 23(9): 687–690(in Chinese).李喜凤, 邱天宝, 张红梅, 胡利欣, 胡春月, 郑楠楠, 唐露. 不同种群蒲公英的内转录间隔区 (ITS) 序列及其亲缘关系分析.中国药学杂志, 2013, 23(9): 687–690. |
[37] | Chen ZA, Huang JR, Xu YW, Yao LJ. Field experiments on the pathogenicity of Paecilomyces cicadae to Piieris rapae[Lep.:Pieridae].Chinese Journal of Biological Control, 1990, 6(3): 131–133(in Chinese).陈祝安, 黄基荣, 许益伟, 姚丽娟. 蝉拟青霉防治菜粉蝶幼虫试验.生物防治通报, 1990, 6(3): 131–133. |