删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

传染性法氏囊病病毒的自然重组

本站小编 Free考研考试/2021-12-26

传染性法氏囊病病毒的自然重组
祁小乐1, 高立1, 王笑梅1, 2
1. 中国农业科学院哈尔滨兽医研究所, 兽医生物技术国家重点实验室, 黑龙江 哈尔滨 150001;
2. 江苏省动物重要疫病与人畜共患病协同创新中心, 江苏 扬州 225009

收稿日期: 2015-07-11; 修回日期: 2015-08-21; 网络出版日期: 2015-09-23
基金项目: 国家自然科学基金重点项目(31430087);黑龙江省自然科学基金(QC2015037);哈尔滨市应用技术研究与开发基金(2014AB3AN058);哈尔滨市创新人才研究专项资金(2014RPQYJ129)
通讯作者: 王笑梅,Fax:+86-451-51997166;E-mail:xmw@hvri.ac.cn


摘要: 传染性法氏囊病病毒(Infectious Bursal Disease Virus, IBDV)是双RNA病毒科(Birnaviridae)的典型代表,其引起的传染性法氏囊病(Infectious Bursal Disease, IBD)是危害养禽业的一种重要免疫抑制病和致死性传染病。IBDV的自然重组给疫病防控带来了新风险。本文综述了IBDV基因组节段重组和基因内重组的主要类型,分析了其形成机制及生物学意义,提出了该类病毒遗传演化研究以及疫病综合防控的新思路。
关键词: 传染性法氏囊病病毒双RNA病毒科基因重组
Naturally occurring reassortants of infectious bursal disease virus-A review
Xiaole Qi1, Li Gao1, Xiaomei Wang1, 2
1. Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Harbin 150001, Heilongjiang Province, China;
2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu Province, China

Received: 11 July 2015; Revised: 21 August 2015; Published online: 23 September 2015
Foundation Item: Supported by the National Natural Science Foundation of China (31430087), by the Natural Science Foundation of Heilongjiang Province (QC2015037), by the Scientific and Technological Research Project of Harbin (2014AB3AN058) and by the Special Fund for Scientific and Technological Innovative Talents of Harbin (2014RPQYJ129)
Corresponding author. Fax: +86-451-51997166; E-mail: xmw@hvri.ac.cn

Abstract:Infectious bursal disease virus (IBDV) is an important representative of Birnaviridae, which causes infectious bursal disease (IBD), one important immuno-suppressive and fatal disease threatening the poultry husbandry. The naturally occurring reassortants of IBDV induced new risks to disease prevention and control. Here, we reviewed the main types of the genome segments reassortants and intragenic recombination, the inherent mechanism and the biological significances were analyzed, which would give us new insights into the virus genetic evolution research and the disease control strategy.
Key words: infectious bursal disease virus (IBDV)Birnaviridaegene reassortant
传染性法氏囊病病毒(Infectious Bursal Disease Virus,IBDV)属于双RNA病毒科(Birnaviridae)禽双RNA病毒属(Avibirnavirus),是该病毒科的典型代表。IBDV引起的传染性法氏囊病(Infectious Bursal Disease,IBD)是主要危害鸡的一种重要免疫抑制病和致死性传染病,在许多国家和地区均有发生或流行,给全球养禽业造成了较大的经济损失[1, 2]。近10多年,IBDV自然重组毒株不断被发现,给疫病防控带来了新风险,引起了研究人员和行业的高度重视。本文结合我们团队自己的研究工作,对IBDV的自然重组现象及其生物学意义进行综述,有利于人们认识和重视双RNA病毒科病毒的遗传演化和基因重组。
1 病毒基因组结构 IBDV呈二十面体对称,球形,无囊膜,表面无突起,直径约60 nm。其基因组由A和B两个双股RNA节段组成,两个节段均包括5′端非编码区(5′non-coding region,5′NCR)、编码区(coding region)和3′端非编码区(3′NCR)。A节段长约3.2 kb,包括2个开放阅读框(Open reading frame,ORF),小ORF在前,大ORF在后,二者部分重叠。小ORF编码VP5蛋白。大ORF编码一个多聚蛋白NH2-pVP2-VP4-VP3-COOH(108 kDa),该多聚蛋白随后被蛋白水解酶VP4剪切成3个蛋白pVP2、VP3、VP4;pVP2进一步被加工为成熟的VP2蛋白。VP2是IBDV的主要结构蛋白,是病毒外衣壳的唯一组分,约占病毒总蛋白的51%。VP2可诱导机体产生中和性抗体,是IBDV主要的宿主保护性抗原。研究发现,VP2决定IBDV的细胞嗜性,也是IBDV最重要的毒力基因[3, 4, 5, 6]。VP3是个多功能蛋白,占病毒蛋白总量的43%,与VP1、基因组dsRNA共同形成核糖核蛋白(Rribonucleoproteins,RNPs),在IBDV的复制和组装过程中起着极为重要的作用[7, 8]。VP5是非结构蛋白,复制非必须,但也是一个重要的毒力基因[9, 10]
B节段长约2.8 kb,只有一个ORF,编码VP1蛋白。VP1蛋白在成熟IBDV中相对分子量最大,但含量却仅占总蛋白的3%。该蛋白具有RNA依赖的RNA聚合酶(RdRp)活性,是病毒复制的必需蛋白。最近研究发现,B节段和VP1在IBDV的遗传演化中起着重要作用,对IBDV的毒力有重要影响[11, 12, 13]
2 基因组的节段重组 IBDV有2个血清型,血清2型可感染火鸡和鸡,但均不致病;血清1型毒株是危害养禽业的元凶。作为RNA病毒,在过去的50多年里,IBDV血清1型毒株发生过两次大的变异。依据致病性和抗原性的不同,这些毒株被分为经典毒株、变异毒株和超强毒株(very virulent IBDV,vvIBDV)[1, 2]。上世纪90年代以来,vvIBDV呈世界性流行。迄今尚未发现IBDV的自然弱毒株,vvIBDV经体外传代获得的致病弱毒株常被用作疫苗进行IBD的防控。IBDV的遗传进化,其基因组A、B节段通常是同步的,即两个节段的基因特征属于同一亚群。然而,近来IBDV出现了一些非同步进化的现象,主要有以下几类。
2.1 超强A独特B型 1996年,中国农业科学院哈尔滨兽医研究所王笑梅等从广西某鸡场中分离到1株IBDV超强毒(vvIBDV),命名为Gx株。随后,在欧盟合作项目(ERBIC18CT980330)的资助下,经世界动物卫生组织(OIE)参考实验室等国际专家共同鉴定,将Gx株确定为中国vvIBDV的一个参考毒株[14]。进一步的基因组测序和遗传演化分析发现,Gx株的基因组A节段与vvIBDV同源性较高,但其B节段却属于一个既不同于超强毒株也不同于弱毒株的独特分支[15]。目前,尚不知道该B节段的进化来源,所以将Gx株样的基因型称为超强A独特B型。另一个早期毒株Harbin-1也属于这一类型,它们可能源于相近的祖先[16, 17]。Gx样毒株在我国的流行越来越普遍,近来相继在我国东北[18]和南方多省区[19]不断分离到类似毒株。这些毒株的基因组属于超强A独特B型,但已经发生了一些变异。譬如HLJ-0504毒株,它与Gx株的多聚蛋白(A节段编码)和VP1蛋白(B节段编码)的同源性分别为99.3%和92.3%[20]。另外,HLJ-0504的VP5蛋白虽然与vvIBDV同源性较高,但其N端存在MLSL短肽缺失,这是弱毒株才有的特征[20]。国外也曾分离到超强A独特B型IBDV,譬如委内瑞拉的02015.1株[21]。02015.1株对SPF鸡致死率仅为8%,远低于我国超强A独特B型毒株的致病力,Gx、HLJ-0504的致死率分别高达60%、86%以上[20],其具体的差异机制有待进一步研究。
2.2 超强A弱B型 超强A弱B型重组IBDV最早发现于上海(SH95株)。经近10年沉寂,广西某鸡场再次分离到该类型重组病毒(GX-NN-L株)[23]。最近,He等对2000-2012年中国南方7个省91个毒株进行序列分析,有24株的VP2为超强毒而VP1为弱毒[19]。2013年,超强A弱B型毒株在我国北方地区的河北省也被分离到(IBD13HeB01株),其基因组A节段源于超强毒而B节段源于弱毒[24]。同年,在赞比亚发现的非洲首例重组IBDV(KZC-104株)也是超强A弱B型[25]。据推测,超强A弱B型重组IBDV是vvIBDV野毒株与弱毒疫苗株重组的产物,但尚缺乏系统的试验数据。IBD13HeB01株、GX-NN-L株的致死率分别为30%、18.6%。显然,B节段的替换显著地降低了vvIBDV的致病性,这也提示基因组B节段也是IBDV毒力构成的重要因素。然而,朱向东等最近报道的分离于华东地区的两株超强A弱B型毒株(QL和ZZ-11),对SPF鸡的致死率竟高达94%和86%[26]
2.3 弱A超强B型 2000年、2004年,浙江大学魏永伟等于浙江省某蛋鸡场中分离到2株罕见的重组IBDV(ZJ2000株和TL2004株),其基因组A节段源于弱毒株而B节段源于超强毒株[27, 28]。最近,弱A超强B型毒株在河南省也被分离到(HN毒株)[29]。该类型毒株致病性也相对较低,ZJ2000、TL2004、HN株的致死率分别为26%、20%、15%[27, 28, 29]。这提示,A、B节段共同决定IBDV的毒力,A节段的作用更大。目前,世界其他国家和地区尚未见到该类病毒的报道。
2.4 其它类型 不仅超强毒和弱毒之间会发生重组,其它毒力型病毒之间也会发生重组。2003年,巴西分离鉴定了该国首株重组IBDV(Br/03/DR),其A节段来自于超强毒,而B节段为经典毒株特征[30]。美国也发现了超强A经典B的重组现象(CA-S7610株)[31]。委内瑞拉的02015.2株的A节段属于vvIBDV,B节段则与变异株Var A同源性更高[21]。2009年,首例血清型间的重组IBDV(CA-K785和CA-D495)在美国加利福尼亚被鉴定,其A、B节段分别源于血清1型的vvIBDV和血清2型[32]
3 基因内重组 除了基因组节段间重组,IBDV的基因内也会发生重组。据报道,韩国的2个毒株KSH和KK1,以及分离于我国的SH-h株的A节段存在基因内重组,其主体部分源自弱毒而VP2高变区被超强毒替换[33, 34, 35]。IBDV经典株的VP2通常有4个特征性的氨基酸,即222P、249Q、286T和318G;而变异株的这4个位点不同,分别为222T、249K、286I和318D。在一项关于拉丁美洲的2001-2011年的IBDV流行病学研究中,发现了基因组A节段内的重组现象:5株墨西哥毒株呈现222T、249Q、286T和318D的特征;9株委内瑞拉毒株、1株哥伦比亚毒株呈现222P、249K、286I和318G的特征。作者认为,IBDV VP2基因的高变区内发生了经典株和变异株之间的同源重组[36]。另外据分析,超强A独特B型毒株Harbin-1的B节段是超强毒与未知来源毒株经过同源重组的嵌合体[33]
4 基因重组的生物学意义 基因组节段重组是IBDV遗传演化和新型致病毒株出现的重要原因之一。vvIBDV的出现给世界养禽业带来了重创,基因组节段重组在vvIBDV的形成和流行过程中起关键作用。超强毒特征的A节段(简称vvA)在vvIBDV爆发的至少20年前就已经存在,超强毒特征的B节段(简称vvB)的出现及其与vvA的重组才导致了vvIBDV的爆发[37]。据报道,IBDV不仅能感染鸭、鹅等其它家禽[38],也可感染麻雀、鸽子、黑脚企鹅、牛背鹭、绒鸭、银鸥等野生禽类[38, 39, 40]。vvB的来源至今仍不清楚,有研究者推测可能来自某种未知的禽类宿主[37]
活疫苗的广泛应用,给野毒株与疫苗株之间的重组提供了条件,譬如超强A弱B型和弱A超强B型IBDV,就属于这一类型。这种重组一方面产生了新的毒株,使得疫病的防控更加复杂;另一方面,可能导致活疫苗的毒力返强,造成新的危害。基因重组也有可能造成病毒抗原漂变,导致免疫逃逸和免疫失败。最近一项研究显示,美国的2株重组IBDV(CA-K785和CA-S7610)在一定程度上突破了现有疫苗的免疫保护[32]。另外,基因重组可能打破目前的微生态平衡,扩宽IBDV的感染谱和进一步增强病毒毒力,对鸡以外的家禽或野禽产生威胁。总之,基因重组正在严重挑战健康养殖,甚至公共卫生。
基因重组的具体机制尚不清楚。有****认为,不同IBDV毒株共同感染同一宿主就可能导致基因的交换或重组[21, 37]。基因重组的前提是不同来源基因节段的匹配性,VP3与VP1的互作、VPg与基因组互作均可能参与这一过程。人呼肠孤病毒的节段重组与其5′NCR的二级结构有关[41],IBDV是否存在这样的机制,尚需研究。迄今,尚没有人在实验室条件下成功复制出IBDV的重组事件。这提示,双RNA病毒的基因重组应该是个多因素共同参与的复杂过程,譬如环境、宿主免疫状态、病原与宿主互作、选择压力等。
5 结语 IBDV与养禽业的健康发展关系密切。IBDV基因组非同步进化已经成为其流行的一个新特征,超强A独特B型IBDV正在成为我国相对主要的流行毒株,超强A弱B型毒株的分离率也有增多的趋势,基因突变和同源重组也是IBDV遗传演化的常态特征。IBDV遗传重组方面的发现和研究不仅加深了人们对IBDV以及双RNA病毒科病毒遗传演化的认知,更给疫病防控和健康养殖提供了新思路。活疫苗的应用虽然在很多疫病的控制中起到了非常重要的作用,但其风险需要引起高度重视。特别是具有一定毒力的活疫苗的使用一定要谨慎,不仅要科学合理,最终目标应该是停止使用。这也给相关科学研究提出了新课题。重要病原的流行病学监测需要持续开展;分子流行病学的研究要从全基因组的角度去评估,以免遗漏更有价值的信息;基因重组对基于系统进化分析的基因分型系统是个挑战,在进行系统进化分析之前排除基因重组现象是必要的;重视野生鸟类等可能的储存宿主在动物疫病传播和进化中的作用,并解析其分子机理和机制;要不断深入研究双RNA病毒科病毒遗传重组的分子机制,探索疫病发生发展的预警体系;研制更安全有效的新型疫苗,譬如亚单位疫苗等,逐步建立疫病净化和根除计划。

参考文献
[1] Müller H, Islam MR, Raue R. Research on infectious bursal disease:the past, the present and the future. Veterinary Microbiology, 2003, 97(1/2):153-165.
[2] Qi XL, Wang YQ, Gao L, Gao HL, Gao YL, Wang XM. The development and application of the reverse genetics technologies of infectious bursal disease virus. Chinese Journal of Virology, 2015, 31(3):326-331. (in Chinese)祁小乐, 王永强, 高立, 高宏雷, 高玉龙, 王笑梅. 传染性法氏囊病病毒反向遗传技术发展及其应用. 病毒学报, 2015, 31(3):326-331.
[3] Brandt M, Yao K, Liu MH, Heckert RA, Vakharia VN. Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. Journal of Virology, 2001, 75(24):11974-11982.
[4] Lim BL, Cao YC, Yu T, Mo CW. Adaptation of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. Journal of Virology, 1999, 73(4):2854-2862.
[5] Qi XL, Gao HL, Gao YL, Qin LT, Wang YQ, Gao L, Wang XM. Naturally occurring mutations at residues 253 and 284 in VP2 contribute to the cell tropism and virulence of very virulent infectious bursal disease virus. Antiviral Research, 2009, 84(3):225-233.
[6] Qi XL, Zhang LZ, Chen YM, Gao L, Wu G, Qin LT, Wang YQ, Ren XG, Gao YL, Gao HL, Wang XM. Mutations of residues 249 and 256 in VP2 are involved in the replication and virulence of infectious bursal disease virus. PLoS One, 2013, 8(7):e70982.
[7] Tacken MGJ, Peeters BPH, Thomas AAM, Rottier PJM, Boot HJ. Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. Journal of Virology, 2002, 76(22):11301-11311.
[8] Wang YQ, Qi XL, Kang ZH, Yu F, Qin LT, Gao HL, Gao YL, Wang XM. A single amino acid in the C-terminus of VP3 protein influences the replication of attenuated infectious bursal disease virus in vitro and in vivo. Antiviral Research, 2010, 87(2):223-229.
[9] Qin LT, Qi XL, Gao HL, Gao YL, Bu ZG, Wang XM. Exchange of the VP5 of infectious bursal disease virus in a serotype Ⅰ strain with that of a serotype Ⅱ strain reduced the viral replication and cytotoxicity. The Journal of Microbiology, 2009, 47(3):344-350.
[10] Qin LT, Qi XL, Gao YL, Gao HL, Lu XH, Wang YQ, Bu ZG, Wang XM. VP5-deficient mutant virus induced protection against challenge with very virulent infectious bursal disease virus of chickens. Vaccine, 2010, 28(21):3735-3740.
[11] Escaffre O, Le Nouen C, Amelot M, Ambroggio X, Ogden KM, Guionie O, Toquin D, Mueller H, Islam MR, Eterradossi N. Both genome segments contribute to the pathogenicity of very virulent infectious bursal disease virus. Journal of Virology, 2013, 87(5):2767-2780.
[12] Gao L, Li K, Qi XL, Gao HL, Gao YL, Qin LT, Wang YQ, Shen N, Kong XG, Wang XM. Triplet amino acids located at positions 145/146/147 of the RNA polymerase of very virulent infectious bursal disease virus contribute to viral virulence. Journal of General Virology, 2014, 95(Pt4):888-897.
[13] Yu F, Ren XG, Wang YQ, Qi XL, Song JS, Gao YL, Qin LT, Gao HL, Wang XM. A single amino acid V4I substitution in VP1 attenuates virulence of very virulent infectious bursal disease virus (vvIBDV) in SPF chickens and increases replication in CEF cells. Virology, 2013, 440(2):204-209.
[14] 王笑梅, 付朝阳, 高宏雷, 宋秀龙, 曾祥伟. 传染性法氏囊病超强毒株Gx的分离鉴定及分子生物学和抗原性分析//中国畜牧兽医学会禽病学分会第十一次学术研讨会论文集. 中国四川成都, 2002:215-219.
[15] Gao HL, Wang XM, Gao YL, Fu CY. Direct evidence of reassortment and mutant spectrum analysis of a very virulent infectious bursal disease virus. Avian Diseases, 2007, 51(4):893-899.
[16] Hon CC, Lam TTY, Yip CW, Wong RTY, Shi M, Jiang JW, Zeng FY, Leung FCC. Phylogenetic evidence for homologous recombination within the family Birnaviridae. Journal of General Virology, 2008, 89(12):3156-3164.
[17] Xia RX, Wang HY, Huang GM, Zhang MF. Sequence and phylogenetic analysis of a Chinese very virulent infectious bursal disease virus. Archives of Virology, 2008, 153(9):1725-1729.
[18] Yu F, Qi XL, Yuwen YQ, Wang YQ, Gao HL, Gao YL, Qin LT, Wang XM. Molecular characteristics of segment B of seven very virulent infectious bursal disease viruses isolated in china. Virus Genes, 2010, 41(2):246-249.
[19] He XM, Xiong ZX, Yang L, Guan DM, Yang XY, Wei P. Molecular epidemiology studies on partial sequences of both genome segments reveal that reassortant infectious bursal disease viruses were dominantly prevalent in southern China during 2000-2012. Archives of Virology, 2014, 159(12):3279-3292.
[20] Qi XL, Gao L, Qin LT, Deng XY, Wu G, Zhang LZ, Yu F, Ren XG, Gao YL, Gao HL, Wang YQ, Wang XM. Genomic sequencing and molecular characteristics of a very virulent strain of infectious bursal disease virus isolated in China. Agricultural Science & Technology, 2011, 12(12):1950-1953.
[21] Le Nouën C, Rivallan G, Toquin D, Darlu P, Morin Y, Beven W, de Boisseson C, Cazaban C, Comte S, Gardin Y, Eterradossi N. Very virulent infectious bursal disease virus:reduced pathogenicity in a rare natural segment-B-reassorted isolate. Journal of General Virology, 2006, 87(Pt1):209-216.
[22] Sun JH, Lu P, Yan YX, Hua XG, Jiang J, Zhao Y. Sequence and analysis of genomic segment A and B of very virulent infectious bursal disease virus isolated from China. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 2003, 50(3):148-154.
[23] Chen F, Liu JJ, Yan ZQ, Liu D, Ji J, Qin JP, Li HY, Ma JY, Bi YZ, Xie QM. Complete genome sequence analysis of a natural reassortant infectious bursal disease virus in China. Journal of Virology, 2012, 86(21):11942-11943.
[24] Lu Z, Zhang LZ, Wang N, Chen YM, Gao L, Wang YQ, Gao HL, Gao YL, Li K, Qi XL, Wang XM. Naturally occurring reassortant infectious bursal disease virus in northern China. Virus Research, 2015, 203:92-95.
[25] Jenberie S, Lynch SE, Kebede F, Christley RM, Gelaye E, Negussie H, Asmare K, Ayelet G. Genetic characterisation of infectious bursal disease virus isolates in Ethiopia. Acta Tropica, 2014, 130:39-43.
[26] Zhu XD, Wang YS, Ouyang W, Pan QX, Bi ZW, Li YH, Fan HJ, Wang XM. Genomic sequence analyses of reassortment strains of infectious bursal disease virus in nature. Chinese Journal of Veterinary Science, 2014, 34(2):219-226. (in Chinese)朱向东, 王永山, 欧阳伟, 潘群兴, 毕振威, 李月华, 范红结, 王笑梅. 传染性法氏囊病病毒自然重配株全基因组序列分析. 中国兽医学报, 2014, 34(2):219-226.
[27] Wei YW, Li JR, Zheng JT, Xu H, Li L, Yu L. Genetic reassortment of infectious bursal disease virus in nature. Biochemical and Biophysical Research Communications, 2006, 350(2):277-287.
[28] Wei YW, Yu XP, Zheng JT, Chu WY, Xu H, Yu XM, Yu L. Reassortant infectious bursal disease virus isolated in China. Virus Research, 2008, 131(2):279-282.
[29] Cui P, Ma SJ, Zhang YG, Li XS, Gao XY, Cui BA, Chen HY. Genomic sequence analysis of a new reassortant infectious bursal disease virus from commercial broiler flocks in central China. Archives of Virology, 2013, 158(9):1973-1978.
[30] Bittencourt Fernandes MJ, Simoni IC, Harakava R, Rivas EB, Arns CW. Partial VP1 sequencing of Brazilian infectious bursal disease virus strains. Brazilian Journal of Microbiology, 2012, 43(3):1015-1021.
[31] Gallardo RA, Carrasco-Medanic R, Zhou H, Lyu S, Wang Y, Woolcock PR, Hoerr FJ. Effects of challenge with very virulent infectious bursal disease virus reassortants in commercial chickens. Avian Diseases, 2014, 58(4):579-586.
[32] Jackwood DJ, Sommer-Wagner SE, Crossley BM, Stoute ST, Woolcock PR, Charlton BR. Identification and pathogenicity of a natural reassortant between a very virulent serotype 1 infectious bursal disease virus (IBDV) and a serotype 2 IBDV. Virology, 2011, 420(2):98-105.
[33] He CQ, Ma LY, Wang D, Li GR, Ding NZ. Homologous recombination is apparent in infectious bursal disease virus. Virology, 2009, 384(1):51-58.
[34] Kwon HM, Kim DK, Hahn TW, Han JH, Jackwood DJ. Sequence of precursor polyprotein gene (segment A) of infectious bursal disease viruses isolated in Korea. Avian Diseases, 2000, 44(3):691-696.
[35] Yuwen YQ, Gao YL, Gao HL, Qi XL, Li TQ, Liu W, Wang XM. Sequence analysis of the VP2 hypervariable region of eight very virulent infectious bursal disease virus isolates from the northeast of China. Avian Diseases, 2008, 52(2):284-290.
[36] Jackwood DJ. Molecular epidemiologic evidence of homologous recombination in infectious bursal disease viruses. Avian Diseases, 2012, 56(3):574-577.
[37] Hon CC, Lam TY, Drummond A, Rambaut A, Lee YF, Yip CW, Zeng F, Lam PY, Ng PTW, Leung FCC. Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus and reassortment of its genome segment B. Journal of Virology, 2006, 80(17):8503-8509.
[38] Wang YS, Wang ZC, Tang YD, Shi ZL, He KW, Li Y, Hou JB, Yao HC, Fan HJ, Lu CP. Comparison of four infectious bursal disease viruses isolated from different bird species. Archives of Virology, 2007, 152(10):1787-1797.
[39] Fabohun OA, Owoade AA, Oluwayelu DO, Olayemi FO. Serological survey of infectious bursal disease virus antibodies in cattle egrets, pigeons and nigerian laughing doves. African Journal of Biomedicine Research, 2000, 3(3):191-192.
[40] Jackwood DJ, Gough RE, Sommer SE. Nucleotide and amino acid sequence analysis of a birnavirus isolated from penguins. Veterinary Record, 2005, 156(17):550-552.
[41] Roner MR, Bassett K, Roehr J. Identification of the 5' sequences required for incorporation of an engineered ssRNA into the Reovirus genome. Virology, 2004, 329(2):348-360.

相关话题/病毒 基因 遗传 自然 免疫