删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

球床高温气冷堆初装堆芯的物理计算方法及验证

清华大学 辅仁网/2017-07-07

球床高温气冷堆初装堆芯的物理计算方法及验证
张竞宇, 李富, 孙玉良
清华大学 核能与新能源技术研究院, 北京 100084
Neutronics calculation methods for the first core of the pebble bed high temperature gas cooled reactor
ZHANG Jingyu, LI Fu, SUN Yuliang
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要球床高温气冷堆在初装堆芯建立过程中,会出现堆芯燃料球比例、空隙填充物质和顶空腔高度等不断变化的情况。基于确定论方法的设计程序VSOP在进行初装堆芯物理计算时需要采用多种特殊处理。为了明确这些特殊处理引入的近似程度,该文选用通用MonteCarlo程序更精细地模拟了初装堆芯。对比结果表明:对于初装堆芯,VSOP程序采用等效球体模型进行热谱计算、通过流修正方法对堆芯空隙填充物质反应性价值进行计算、以真空气氛近似氦气气氛、采用分方向扩散系数的方法对大尺寸顶空腔进行计算所引入的误差都很小。因此,VSOP程序对初装堆芯的这些近似处理是合理可行的。
关键词 球床高温气冷堆,初装堆芯,VSOP程序,Monte Carlo程序,验证
Abstract:During the building of the first core of the pebble bed high-temperature gas-cooled reactor (PBR), the ratio between the fuel spheres and graphite spheres, the fill material in the gaps in the core and the cavity height above the pebble bed will change. Thus, the neutronics design of the first core using the deterministic VSOP code needs some special treatments. The approximations for the first are an evaluated using a more detailed model of the first core analyzed by a general Monte Carlo code. Comparisons of the predictions of the two codes show that the special treatments for the first core used with the VSOP code will not cause significant errors include using the equivalent sphere model to calculate the thermal spectrum, calculating the reactivity of the gap fill material using the streaming correction method, heating the helium atmosphere as a vacuum, and using anisotropic diffusion coefficients to model the large top cavity. Thus, these special treatments for the first core used by the VSOP code are acceptable.
Key wordspebble bed high-temperature gas-cooled reactorfirst coreVSOP codeMonte Carlo codeverification
收稿日期: 2012-07-11 出版日期: 2017-04-19
ZTFLH:TL329
通讯作者:李富,研究员,E-mail:lifu@mail.tsinghua.edu.cnE-mail: lifu@mail.tsinghua.edu.cn
引用本文:
张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
ZHANG Jingyu, LI Fu, SUN Yuliang. Neutronics calculation methods for the first core of the pebble bed high temperature gas cooled reactor. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 405-409.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.012 http://jst.tsinghuajournals.com/CN/Y2017/V57/I4/405


图表:
图1 特殊形状的燃料球的剖面图
图2 反射层物理计算分区模型
图3 初装堆芯热谱
表1 MCNP堆芯空隙填充物质的反应性价值
表2 VSOP堆芯空隙填充物质的反应性价值
图4 Δkeff随球床高度逐渐增加的变化规律


参考文献:
[1] ZHANG Zuoyi, WU Zongxin, WANG Dazhong, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239(7): 1212-1219.
[2] Rütten H J, Haas K A, Brockmann H, et al. VSOP (99/05) Computer Code System for Reactor Physics and Fuel Cycle Simulation, Jül-4189[R]. Jülich, Germany: Forschungszentrum Jülich, 2005.
[3] International Atomic Energy Agency. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10, IAEA-TECDOC-1382[R]. Vienna, Austria: IAEA, 2003.
[4] Briesmeister J F. MCNP-A General Monte Carlo N-particle Transport Code Version 4C, LA-13709-M[R]. Los Alamos, USA: Los Alamos National Laboratory, 2000.
[5] Joanou C D, Dudek J S. GAM-I-A Consistant P1 Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants, GA-1850[R]. San Diego, USA: General Atomic, 1961.
[6] Honek H C. THERMOS-A Thermalization Transport Theory Code for Reactor Lattice Calculation, BNL-5826[R]. New York, USA: Brookhaven National Laboratory, 1961.
[7] Lieberoth J, Stojadinovic A. Neutron streaming in pebble beds[J]. Nuclear Science and Engineering, 1980, 76(3): 336-344.
[8] 经荥清, 杨永伟, 古玉祥, 等. HTR-10初次临界装料预估[J]. 清华大学学报(自然科学版), 2001, 41(4): 116-119.JING Xingqing, YANG Yongwei, GU Yuxiang, et al. Prediction calculation of HTR-10 fuel loading for the first criticality[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(4): 116-119. (in Chinese)
[9] Gerwin H, Scherer W. Treatment of the upper cavity in a pebble-bed high-temperature gas-cooled reactor by diffusion theory[J]. Nuclear Science and Engineering, 1987, 97(1): 9-19.
[10] 常鸿, 杨永伟, 经荥清. 球床式高温气冷堆初次临界物理计算的蒙特卡罗方法模型分析[J]. 核动力工程, 2005, 26(5): 419-424.CHANG Hong, YANG Yongwei, JING Xingqing. Model analysis of Monte Carlo method for first criticality physics calculation in pebble bed high temperature gas-cooled reactor[J]. Nuclear Power Engineering, 2005, 26(5): 419-424. (in Chinese)
[11] 经荥清, 杨永伟, 许云林. 蒙特卡罗方法用于HTR-10首次临界燃料装料预估的校算[J]. 核动力工程, 2005, 26(1): 28-34.JING Xingqing, YANG Yongwei, XU Yunlin. Application of Monte Carlo method for verification calculation in fuel loading prediction for first criticality of HTR-10[J]. Nuclear Power Engineering, 2005, 26(1): 28-34. (in Chinese)
[12] Seker V, Colak V. HTR-10 full core first criticality analysis with MCNP[J]. Nuclear Engineering and Design, 2003, 222(2-3): 263-270.


相关文章:
[1]张䶮, 钱俊彦, 李舟军, 马殿富. 基于抽象不变式的程序安全性验证[J]. 清华大学学报(自然科学版), 2016, 56(7): 777-784.
[2]宁博, 裴晓霞, 李玉居, 裴新宇. LBS大数据中基于固定网格划分四叉树索引的查询验证[J]. 清华大学学报(自然科学版), 2016, 56(7): 785-792.
[3]刘雨廷, 何榕. 单颗粒煤焦在大空间中燃烧的数值模拟方法及实验验证[J]. 清华大学学报(自然科学版), 2016, 56(6): 598-604.

相关话题/程序 计算 物理 物质 工程