删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于多方满意的PPP项目股权配置优化研究

清华大学 辅仁网/2017-07-07

基于多方满意的PPP项目股权配置优化研究
冯珂1,2, 王守清1,2, 薛彦广1
1. 清华大学 建设管理系, 北京 100084;
2. 清华大学 恒隆房地产研究中心, 北京 100084
Optimization of PPP project equity structures based on the satisfactions of the main stakeholders
FENG Ke1,2, WANG Shouqing1,2, XUE Yanguang1
1. Department of Construction Management, Tsinghua University, Beijing 100084, China;
2. Hang Lung Center for Real Estate, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要公私合作制(public-private partnership,PPP)项目的股权配置直接影响着风险和收益在各项目干系人之间的分配,科学合理的股权配置决策模型对于确保项目的成功至关重要。该文首先归纳分析了PPP项目股权配置决策中各项目干系人的决策原则。根据这些原则和PPP项目融资的特点,在债权人、私人部门和公共部门三方主要项目干系人满意的约束条件下,构建了一个寻求项目社会成本最低的股权配置模型。其次,使用遗传算法对模型的最优股权配置进行了求解,并在适应度函数的计算中引入MonteCarlo模拟对项目收益和成本的关键影响因素进行了仿真,加入免疫记忆细胞提高了算法的收敛性。最后,根据某轨道交通PPP项目的案例对模型进行了验证。结果表明:该研究提出的建模与仿真方法可为类似项目中的股权配置决策提供参考。
关键词 公私合作制(PPP),股权结构,遗传算法,Monte Carlo模拟
Abstract:The equity structure of a public-private partnership (PPP) project directly affects the allocation of risk and interest among the project stakeholders. A reasonable equity allocation decision making model is important for a project's success. This paper first analyzes the equity allocation decision making principles of the main stakeholders. These principles and project financing characteristic were then used to define an optimization model to minimize a PPP projects' social costs while satisfying the objectives of the key PPP stakeholders, i.e., the debtors, the private companies and the governments. A genetic algorithm is used to solve the decision making problem with a Monte Carlo model to simulate the changes in the project revenues with an immunological memory cell to improve the algorithm convergence. The model is validated by companies with an actual urban rail transport project. The model can be used to provide reference data for public and/or private entities for equity structure decision making for other PPP projects.
Key wordspublic-private partnership (PPP)equity structuregenetic algorithmMonte Carlo simulation
收稿日期: 2015-06-14 出版日期: 2017-04-19
ZTFLH:F407.9
通讯作者:王守清,教授,E-mail:sqwang@tsinghua.edu.cnE-mail: sqwang@tsinghua.edu.cn
引用本文:
冯珂, 王守清, 薛彦广. 基于多方满意的PPP项目股权配置优化研究[J]. 清华大学学报(自然科学版), 2017, 57(4): 376-381.
FENG Ke, WANG Shouqing, XUE Yanguang. Optimization of PPP project equity structures based on the satisfactions of the main stakeholders. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 376-381.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.007 http://jst.tsinghuajournals.com/CN/Y2017/V57/I4/376


图表:
表1 遗传算法的基本参数设置
图1 PPP项目股权配置模型的求解流程
表2 关键参数的概率分布
表3 项目年净现金流的模拟数值
图2 遗传算法的求解迭代过程
图3 遗传算法适应度值的变化过程


参考文献:
[1] Bakatjan S, Arikan M, Tiong R L K. Optimal capital structure model for BOT power projects in Turkey[J]. Journal of Construction Engineering and Management, 2003, 129(1): 89-97.
[2] Zhang X. Financial viability analysis and capital structure optimization in privatized public infrastructure projects[J]. Journal of Construction Engineering and Management, 2005, 131(6): 656-668.
[3] Iyer K C, Sagheer M. Optimization of bid-winning potential and capital structure for build-operate-transfer road projects in India[J]. Journal of Management in Engineering, 2011, 28(2): 104-113.
[4] Sharma D, Cui Q, Chen L, et al. Balancing private and public interests in public-private partnership contracts through optimization of equity capital structure[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2151(1): 60-66.
[5] 孙慧, 范志清, 石烨. PPP模式下高速公路项目最优股权结构研究[J]. 管理工程学报, 2011, 25(1): 154-157.SUN Hui, FAN Zhiqing, SHI Ye. Research on the optimal ownership structure of an expressway under PPP scheme[J]. Journal of Industrial Engineering/Engineering Management, 2011, 25(1): 154-157. (in Chinese)
[6] 盛和太, 王守清, 黄硕. PPP项目公司的股权结构及其在某养老项目中的应用[J]. 工程管理学报, 2011, 25(4): 388-392.SHENG Hetai, WANG Shouqing, HUANG Shuo. Analysis of equity shares of PPP project company and its application in a resthome project[J]. Journal of Engineering Management, 2011, 25(4): 388-392.(in Chinese)
[7] de Marco A, Mangano G, Zou X Y. Factors influencing the equity share of build-operate-transfer projects[J]. Built Environment Project and Asset Management, 2012, 2(1): 70-85.
[8] Donkor E A, Duffey M. Optimal capital structure and financial risk of project finance investments: A simulation optimization model with chance constraints[J]. The Engineering Economist, 2013, 58(1): 19-34.
[9] Kurniawan F, Ogunlana S, Motawa I. Stakeholders' expectations in utilising financial models for public-private partnership projects[J]. Built Environment Project and Asset Management, 2014, 4(1): 4-21.
[10] Chen B, Liou F M, Huang C P. Optimal financing mix of financially non-viable private-participation investment project with initial subsidy[J]. Engineering Economics, 2012, 23(5): 452-461.
[11] 柯永建, 王守清, 陈炳泉. 激励私营部门参与基础设施PPP项目的措施[J]. 清华大学学报(自然科学版), 2009, 49(9): 48-51. KE Yongjian, WANG Shouqing, CHAN Albert Pingchuen. Government incentives for private sector involvement in infrastructure PPP projects[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9): 48-51.(in Chinese)
[12] Zheng D X M, Ng S T, Kumaraswamy M M. Applying a genetic algorithm-based multi-objective approach for time-cost optimization[J]. Journal of Construction Engineering and Management, 2004, 130(2): 168-176.
[13] 严心池, 安伟光, 赵维涛. 自适应免疫遗传算法[J]. 应用力学学报, 2005, 22(3): 445-448. YAN Xinchi, AN Weiguang, ZHAO Weitao. Adaptive immunity genetic algorithm[J].Chinese Journal of Applied Mechanics, 2005, 22(3): 445-448.(in Chinese)
[14] Yun S, Han S H, Kim H, et al. Capital structure optimization for build-operate-transfer (BOT) projects using a stochastic and multi-objective approach[J]. Canadian Journal of Civil Engineering, 2009, 36(5): 777-790.
[15] 盛和太. PPP/BOT项目的资本结构选择研究[D]. 北京: 清华大学, 2013. SHENG Hetai. Study on the Capital Structure of PPP/BOT Projects[D]. Beijing: Tsinghua University, 2013.(in Chinese)


相关文章:
[1]孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[2]邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429.
[3]陈宜正, 李君利, 邱睿, 武祯, 康玺. 医用加速器场所中子和感生γ光子剂量当量的计算分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1284-1289.
[4]刘哲, 金达锋, 范志瑞. 基于代理模型的复合材料带加强筋板铺层优化[J]. 清华大学学报(自然科学版), 2015, 55(7): 782-789.
[5]胡庆东, 曾志, 马豪, 程建平, 李君利, 张辉, 王鑫, 武祯. 室内环境中子能谱及剂量率的多球谱仪测量[J]. 清华大学学报(自然科学版), 2015, 55(12): 1332-1334,1341.
[6]丁荣涛. 基于合作博弈的港口物流链云服务组织方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 366-372.

相关话题/遗传 优化 北京 清华大学 管理